Chapter 4: Problem 53
Multiple Choice Two positive numbers have a sum of 60. What is the maximum product of one number times the square of the second number? (a) 3481 (b) 3600 (c) 27,000 (d) 32,000 (e) 36,000
Chapter 4: Problem 53
Multiple Choice Two positive numbers have a sum of 60. What is the maximum product of one number times the square of the second number? (a) 3481 (b) 3600 (c) 27,000 (d) 32,000 (e) 36,000
All the tools & learning materials you need for study success - in one app.
Get started for freeDraining Conical Reservoir Water is flowing at the rate of 50 \(\mathrm{m}^{3} / \mathrm{min}\) from a concrete conical reservoir (vertex down) of base radius 45 \(\mathrm{m}\) and height 6 \(\mathrm{m} .\) (a) How fast is the water level falling when the water is 5 \(\mathrm{m}\) deep? (b) How fast is the radius of the water's surface changing at that moment? Give your answer in \(\mathrm{cm} / \mathrm{min.}\)
Oscillation Show that if \(h>0,\) applying Newton's method to $$f(x)=\left\\{\begin{array}{ll}{\sqrt{x},} & {x \geq 0} \\ {\sqrt{-x},} & {x<0}\end{array}\right.$$ leads to \(x_{2}=-h\) if \(x_{1}=h,\) and to \(x_{2}=h\) if \(x_{1}=-h\) Draw a picture that shows what is going on.
Multiple Choice What is the maximum area of a right triangle with hypotenuse 10? \(\begin{array}{llll}{\text { (A) } 24} & {\text { (B) } 25} & {\text { (C) } 25 \sqrt{2}} & {\text { (D) } 48} & {\text { (E) } 50}\end{array}\)
Group Activity In Exercises \(39-42,\) sketch a graph of a differentiable function \(y=f(x)\) that has the given properties. $$\begin{array}{l}{\text { A local minimum value that is greater than one of its local maxi- }} \\ {\text { mum values. }}\end{array}$$
The Linearization is the Best Linear Approximation Suppose that \(y=f(x)\) is differentiable at \(x=a\) and that \(g(x)=m(x-a)+c(m\) and \(c\) constants). If the error \(E(x)=f(x)-g(x)\) were small enough near \(x=a,\) we might think of using \(g\) as a linear approximation of \(f\) instead of the linearization \(L(x)=f(a)+f^{\prime}(a)(x-a) .\) Show that if we impose on \(g\) the conditions i. \(E(a)=0\) ii. \(\lim _{x \rightarrow a} \frac{E(x)}{x-a}=0\) then \(g(x)=f(a)+f^{\prime}(a)(x-a) .\) Thus, the linearization gives the only linear approximation whose error is both zero at \(x=a\) and negligible in comparison with \((x-a)\) .
What do you think about this solution?
We value your feedback to improve our textbook solutions.