Chapter 4: Problem 46
True or False If \(m\) is a local minimum and \(M\) is a local maximum of a
continuous function \(f\) on \((a, b),\) then \(m
Chapter 4: Problem 46
True or False If \(m\) is a local minimum and \(M\) is a local maximum of a
continuous function \(f\) on \((a, b),\) then \(m
All the tools & learning materials you need for study success - in one app.
Get started for freeMultiple Choice If \(f(0)=f^{\prime}(0)=f^{n}(0)=0,\) which of the following must be true? \(\mathrm (A) There is a local maximum of \)f\( at the origin. (B) There is a local minimum of \)f\( at the origin. (C) There is no local extremum of \)f\( at the origin. (D) There is a point of inflection of the graph of \)f\( at the origin. (E) There is a horizontal tangent to the graph of \)f$ at the origin.
Analyzing Derivative Data Assume that \(f\) is continuous on \([-2,2]\) and differentiable on \((-2,2) .\) The table gives some values of \(f^{\prime}(x)\) $$ \begin{array}{cccc}\hline x & {f^{\prime}(x)} & {x} & {f^{\prime}(x)} \\\ \hline-2 & {7} & {0.25} & {-4.81} \\ {-1.75} & {4.19} & {0.5} & {-4.25} \\\ {-1.5} & {1.75} & {0.75} & {-3.31} \\ {-1.25} & {-0.31} & {1} & {-2}\end{array} $$ $$ \begin{array}{rrrr}{-1} & {-2} & {1.25} & {-0.31} \\ {-0.75} & {-3.31} & {1.5} & {1.75} \\ {-0.5} & {-4.25} & {1.75} & {4.19}\end{array} $$ $$ \begin{array}{cccc}{-0.25} & {-4.81} & {2} & {7} \\ {0} & {-5}\end{array} $$ $$ \begin{array}{l}{\text { (a) Estimate where } f \text { is increasing, decreasing, and has local }} \\ {\text { extrema. }} \\ {\text { (b) Find a quadratic regression equation for the data in the table }} \\ {\text { and superimpose its graph on a scatter plot of the data. }} \\ {\text { (c) Use the model in part (b) for } f^{\prime} \text { and find a formula for } f \text { that }} \\ {\text { satisties } f(0)=0 .}\end{array} $$
Oscillation Show that if \(h>0,\) applying Newton's method to $$f(x)=\left\\{\begin{array}{ll}{\sqrt{x},} & {x \geq 0} \\ {\sqrt{-x},} & {x<0}\end{array}\right.$$ leads to \(x_{2}=-h\) if \(x_{1}=h,\) and to \(x_{2}=h\) if \(x_{1}=-h\) Draw a picture that shows what is going on.
Strength of a Beam The strength S of a rectangular wooden beam is proportional to its width times the square of its depth. (a) Find the dimensions of the strongest beam that can be cut from a 12-in. diameter cylindrical log. (b) Writing to Learn Graph \(S\) as a function of the beam's width \(w,\) assuming the proportionality constant to be \(k=1 .\) Reconcile what you see with your answer in part (a). (c) Writing to Learn On the same screen, graph \(S\) as a function of the beam's depth \(d,\) again taking \(k=1 .\) Compare the graphs with one another and with your answer in part (a). What would be the effect of changing to some other value of \(k ?\) Try it.
Multiple Choice If the volume of a cube is increasing at 24 \(\mathrm{in}^{3} / \mathrm{min}\) and the surface area of the cube is increasing at 12 \(\mathrm{in}^{2} / \mathrm{min}\) , what is the length of each edge of the cube? \(\mathrm{}\) \(\begin{array}{lll}{\text { (A) } 2 \text { in. }} & {\text { (B) } 2 \sqrt{2} \text { in. (C) } \sqrt[3]{12} \text { in. (D) } 4 \text { in. }}\end{array}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.