Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

True or False If \(m\) is a local minimum and \(M\) is a local maximum of a continuous function \(f\) on \((a, b),\) then \(m

Short Answer

Expert verified
The statement is false. It is possible for \(m\) to be equal to \(M\), which would result in \(m<M\) being false.

Step by step solution

01

Understanding local minimum and maximum

A local minimum of a function is a point where the function attains a value which is less than or equal to the values of the function in a small interval around it. On the other hand, a local maximum of a function is a point where the function attains a value which is greater than or equal to the values of the function in a small interval around it.
02

Comparing local minimum and maximum

Recall that \((a, b)\) is an open interval, meaning \(a\) and \(b\) are not included in the interval. Since \(m\) is a local minimum, there are values of the function nearby that are greater or equal to \(m\). Similarly, since \(M\) is a local maximum, there are values of the function near \(M\) that are less or equal to \(M\).
03

Confronting the comparison with the question

The function is continuous and the given condition is that \(m\) is a local minimum and \(M\) is a local maximum. Since \(M\) can't be less than \(m\), because \(M\) is a local maximum and \(m\) is a local minimum, the statement \(m<M\) can be false only if \(m=M\). However, this doesn't violate the definition, as the definition of local extremum allows for the possibility that the extreme value is attained at several different points in its domain. Therefore, the statement isn't universally true.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Multiple Choice If \(f(0)=f^{\prime}(0)=f^{n}(0)=0,\) which of the following must be true? \(\mathrm (A) There is a local maximum of \)f\( at the origin. (B) There is a local minimum of \)f\( at the origin. (C) There is no local extremum of \)f\( at the origin. (D) There is a point of inflection of the graph of \)f\( at the origin. (E) There is a horizontal tangent to the graph of \)f$ at the origin.

Analyzing Derivative Data Assume that \(f\) is continuous on \([-2,2]\) and differentiable on \((-2,2) .\) The table gives some values of \(f^{\prime}(x)\) $$ \begin{array}{cccc}\hline x & {f^{\prime}(x)} & {x} & {f^{\prime}(x)} \\\ \hline-2 & {7} & {0.25} & {-4.81} \\ {-1.75} & {4.19} & {0.5} & {-4.25} \\\ {-1.5} & {1.75} & {0.75} & {-3.31} \\ {-1.25} & {-0.31} & {1} & {-2}\end{array} $$ $$ \begin{array}{rrrr}{-1} & {-2} & {1.25} & {-0.31} \\ {-0.75} & {-3.31} & {1.5} & {1.75} \\ {-0.5} & {-4.25} & {1.75} & {4.19}\end{array} $$ $$ \begin{array}{cccc}{-0.25} & {-4.81} & {2} & {7} \\ {0} & {-5}\end{array} $$ $$ \begin{array}{l}{\text { (a) Estimate where } f \text { is increasing, decreasing, and has local }} \\ {\text { extrema. }} \\ {\text { (b) Find a quadratic regression equation for the data in the table }} \\ {\text { and superimpose its graph on a scatter plot of the data. }} \\ {\text { (c) Use the model in part (b) for } f^{\prime} \text { and find a formula for } f \text { that }} \\ {\text { satisties } f(0)=0 .}\end{array} $$

Oscillation Show that if \(h>0,\) applying Newton's method to $$f(x)=\left\\{\begin{array}{ll}{\sqrt{x},} & {x \geq 0} \\ {\sqrt{-x},} & {x<0}\end{array}\right.$$ leads to \(x_{2}=-h\) if \(x_{1}=h,\) and to \(x_{2}=h\) if \(x_{1}=-h\) Draw a picture that shows what is going on.

Strength of a Beam The strength S of a rectangular wooden beam is proportional to its width times the square of its depth. (a) Find the dimensions of the strongest beam that can be cut from a 12-in. diameter cylindrical log. (b) Writing to Learn Graph \(S\) as a function of the beam's width \(w,\) assuming the proportionality constant to be \(k=1 .\) Reconcile what you see with your answer in part (a). (c) Writing to Learn On the same screen, graph \(S\) as a function of the beam's depth \(d,\) again taking \(k=1 .\) Compare the graphs with one another and with your answer in part (a). What would be the effect of changing to some other value of \(k ?\) Try it.

Multiple Choice If the volume of a cube is increasing at 24 \(\mathrm{in}^{3} / \mathrm{min}\) and the surface area of the cube is increasing at 12 \(\mathrm{in}^{2} / \mathrm{min}\) , what is the length of each edge of the cube? \(\mathrm{}\) \(\begin{array}{lll}{\text { (A) } 2 \text { in. }} & {\text { (B) } 2 \sqrt{2} \text { in. (C) } \sqrt[3]{12} \text { in. (D) } 4 \text { in. }}\end{array}\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free