Chapter 4: Problem 45
Vertical Motion Two masses hanging side by side from springs have positions \(s_{1}=2 \sin t\) and \(s_{2}=\sin 2 t\) respectively, with \(s_{1}\) and \(s_{2}\) in meters and \(t\) in seconds. (a) At what times in the interval \(t>0\) do the masses pass each other? [Hint: \(\sin 2 t=2 \sin t \cos t ]\) (b) When in the interval \(0 \leq t \leq 2 \pi\) is the vertical distance between the masses the greatest? What is this distance? (Hint: \(\cos 2 t=2 \cos ^{2} t-1 . )\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.