Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Group Activity Cardiac Output In the late 1860 s, Adolf Fick, a professor of physiology in the Faculty of Medicine in Wurtzberg, Germany, developed one of the methods we use today for measuring how much blood your heart pumps in a minute. Your cardiac output as you read this sentence is probably about 7 liters a minute. At rest it is likely to be a bit under 6 \(\mathrm{L} / \mathrm{min}\) . If you are a trained marathon runner running a marathon, your cardiac output can be as high as 30 \(\mathrm{L} / \mathrm{min.}\) Your cardiac output can be calculated with the formula $$$=\frac{Q}{D}$$ where \(Q\) is the number of milliliters of \(\mathrm{CO}_{2}\) you exhale in a minute and \(D\) is the difference between the \(\mathrm{CO}_{2}\) concentration \((\mathrm{mL} / \mathrm{L})\) in the blood pumped to the lungs and the \(\mathrm{CO}_{2}\) concentration in the blood returning from the lungs. With \(Q=233 \mathrm{mL} / \mathrm{min}\) and \(D=97-56=41 \mathrm{mL} / \mathrm{L}\) $$y=\frac{233 \mathrm{mL} / \mathrm{min}}{41 \mathrm{mL} / \mathrm{L}} \approx 5.68 \mathrm{L} / \mathrm{min}$$ fairly close to the 6 \(\mathrm{L} / \mathrm{min}\) that most people have at basal (resting) conditions. (Data courtesy of J. Kenneth Herd, M.D. Quillan College of Medicine, East Tennessee State University.) Suppose that when \(Q=233\) and \(D=41,\) we also know that \(D\) is decreasing at the rate of 2 units a minute but that \(Q\) remains unchanged. What is happening to the cardiac output?

Short Answer

Expert verified
When the rate of decrease of D (concentration difference of CO2 between the blood to and from the lungs) is 2 units per minute while Q (volume of exhaled CO2) remains constant, the cardiac output is increasing at an approximate rate of \( \frac{466}{1681} \) liters per minute.

Step by step solution

01

Understanding the Given Variables and Formula

In this scenario, the cardiac output is given by the equation \( Y = \frac{Q}{D} \), where Y represents the cardiac output, Q is the volume of exhaled CO2 in a minute, and D signifies the difference in CO2 concentration in the blood pumped to the lungs and returning from the lungs. As given, initially, \( Q = 233 \) and \( D = 41 \). The rate at which D is decreasing is also given, which is 2 units per minute.
02

Differentiating the Formula

Since we're asked about the rate of change, we need to differentiate the formula to obtain dY/dt. Using the quotient rule (which states that the derivative of two functions f and g, f/g, is given as (g * df/dt - f * dg/dt)/g²), we have \( \frac{dY}{dt} = \frac{D\frac{dQ}{dt} - Q\frac{dD}{dt}}{D^2} \). In our case, dQ/dt = 0 (since Q is constant) and dD/dt = -2 (since D is decreasing by 2units/minute).
03

Substituting Values into the Derivative

Substituting the values into the expression for dY/dt, we obtain \( \frac{dY}{dt} \) = \( \frac{D * 0 - 233 * (-2)}{41^2} \) = \( \frac{466} {1681} \) L/minute.
04

Interpreting the Result

The rate of change of cardiac output is positive, which means that the cardiac output is increasing even as the difference in CO2 concentration in blood (D) is decreasing. This result might seem counter-intuitive, as one might think that if D decreases, the cardiac output should decrease as well. However, in the function Y = Q/D, as D decreases and Q remains constant, Y actually increases, according to mathematical rules.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Particle Motion A particle moves from right to left along the parabolic curve \(y=\sqrt{-x}\) in such a way that its \(x\) -coordinate (in meters) decreases at the rate of 8 \(\mathrm{m} / \mathrm{sec} .\) How fast is the angle of inclination \(\theta\) of the line joining the particle to the origin changing when $x=-4 ?

Airplane Landing Path An airplane is flying at altitude \(H\) when it begins its descent to an airport runway that is at horizontal ground distance \(L\) from the airplane, as shown in the figure. Assume that the landing path of the airplane is the graph of a cubic polynomial function \(y=a x^{3}+b x^{2}+c x+d\) where \(y(-L)=H\) and \(y(0)=0 .\) (a) What is \(d y / d x\) at \(x=0 ?\) (b) What is \(d y / d x\) at \(x=-L ?\) (c) Use the values for \(d y / d x\) at \(x=0\) and \(x=-L\) together with \(y(0)=0\) and \(y(-L)=H\) to show that $$y(x)=H\left[2\left(\frac{x}{L}\right)^{3}+3\left(\frac{x}{L}\right)^{2}\right]$$

Growing Tree The diameter of a tree was 10 in. During the following year, the circumference increased 2 in. About how much did the tree's diameter increase? the tree's cross section area?

The domain of f^{\prime}\( is \)[0,1) \cup(1,2) \cup(2,3]

Tin Pest When metallic tin is kept below \(13.2^{\circ} \mathrm{C}\) it slowly becomes brittle and crumbles to a gray powder. Tin objects eventually crumble to this gray powder spontaneously if kept in a cold climate for years. The Europeans who saw tin organ pipes in their churches crumble away years ago called the change tin pest because it seemed to be contagious. And indeed it was, for the gray powder is a catalyst for its own formation. A catalyst for a chemical reaction is a substance that controls the rate of reaction without undergoing any permanent change in itself. An autocatalytic reaction is one whose product is a catalyst for its own formation. Such a reaction may proceed slowly at first if the amount of catalyst present is small and slowly again at the end, when most of the original substance is used up. But in between, when both the substance and its catalyst product are abundant, the reaction proceeds at a faster pace. In some cases it is reasonable to assume that the rate \(v=d x / d t\) of the reaction is proportional both to the amount of the original substance present and to the amount of product. That is, \(v\) may be considered to be a function of \(x\) alone, and $$v=k x(a-x)=k a x-k x^{2}$$ where \(\begin{aligned} x &=\text { the amount of product, } \\ a &=\text { the amount of substance at the beginning, } \\ k &=\text { a positive constant. } \end{aligned}\) At what value of \(x\) does the rate \(v\) have a maximum? What is the maximum value of \(v ?\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free