Chapter 4: Problem 44
Group Activity Cardiac Output In the late 1860 s, Adolf Fick, a professor of physiology in the Faculty of Medicine in Wurtzberg, Germany, developed one of the methods we use today for measuring how much blood your heart pumps in a minute. Your cardiac output as you read this sentence is probably about 7 liters a minute. At rest it is likely to be a bit under 6 \(\mathrm{L} / \mathrm{min}\) . If you are a trained marathon runner running a marathon, your cardiac output can be as high as 30 \(\mathrm{L} / \mathrm{min.}\) Your cardiac output can be calculated with the formula $$$=\frac{Q}{D}$$ where \(Q\) is the number of milliliters of \(\mathrm{CO}_{2}\) you exhale in a minute and \(D\) is the difference between the \(\mathrm{CO}_{2}\) concentration \((\mathrm{mL} / \mathrm{L})\) in the blood pumped to the lungs and the \(\mathrm{CO}_{2}\) concentration in the blood returning from the lungs. With \(Q=233 \mathrm{mL} / \mathrm{min}\) and \(D=97-56=41 \mathrm{mL} / \mathrm{L}\) $$y=\frac{233 \mathrm{mL} / \mathrm{min}}{41 \mathrm{mL} / \mathrm{L}} \approx 5.68 \mathrm{L} / \mathrm{min}$$ fairly close to the 6 \(\mathrm{L} / \mathrm{min}\) that most people have at basal (resting) conditions. (Data courtesy of J. Kenneth Herd, M.D. Quillan College of Medicine, East Tennessee State University.) Suppose that when \(Q=233\) and \(D=41,\) we also know that \(D\) is decreasing at the rate of 2 units a minute but that \(Q\) remains unchanged. What is happening to the cardiac output?