Chapter 4: Problem 41
Calculus and Geometry How close does the curve \(y=\sqrt{x}\) come to the point \((3 / 2,0) ?[\)Hint: If you minimize the square of the distance, you can avoid square roots.
Chapter 4: Problem 41
Calculus and Geometry How close does the curve \(y=\sqrt{x}\) come to the point \((3 / 2,0) ?[\)Hint: If you minimize the square of the distance, you can avoid square roots.
All the tools & learning materials you need for study success - in one app.
Get started for freeLinearization Show that the approximation of tan \(x\) by its linearization at the origin must improve as \(x \rightarrow 0\) by showing that $$\lim _{x \rightarrow 0} \frac{\tan x}{x}=1$$
Walkers \(A\) and \(B\) are walking on straight streets that meet at right angles. \(A\) approaches the intersection at 2 \(\mathrm{m} / \mathrm{sec}\) and \(B\) moves away from the intersection at 1 \(\mathrm{m} / \mathrm{sec}\) as shown in the figure. At what rate is the angle \(\theta\) changing when \(A\) is 10 \(\mathrm{m}\)from the intersection and \(B\) is 20 \(\mathrm{m}\) from the intersection? Express your answer in degrees per second to the nearest degree.
Multiple Choice The \(x\) -coordinates of the points of inflection of the graph of \(y=x^{5}-5 x^{4}+3 x+7\) are \(\mathrm \) (A) 0 only (B) 1 only (C) 3 only (D) 0 and 3 (E) 0 and 1
Airplane Landing Path An airplane is flying at altitude \(H\) when it begins its descent to an airport runway that is at horizontal ground distance \(L\) from the airplane, as shown in the figure. Assume that the landing path of the airplane is the graph of a cubic polynomial function \(y=a x^{3}+b x^{2}+c x+d\) where \(y(-L)=H\) and \(y(0)=0 .\) (a) What is \(d y / d x\) at \(x=0 ?\) (b) What is \(d y / d x\) at \(x=-L ?\) (c) Use the values for \(d y / d x\) at \(x=0\) and \(x=-L\) together with \(y(0)=0\) and \(y(-L)=H\) to show that $$y(x)=H\left[2\left(\frac{x}{L}\right)^{3}+3\left(\frac{x}{L}\right)^{2}\right]$$
You may use a graphing calculator to solve the following problems. $$ \begin{array}{l}{\text { True or False If } f \text { is differentiable and increasing on }(a, b),} \\ {\text { then } f^{\prime}(c)>0 \text { for every } c \text { in }(a, b) . \text { Justify your answer. }}\end{array} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.