Chapter 4: Problem 4
\(f(x)=\ln (x+1), \quad a=0\)
Chapter 4: Problem 4
\(f(x)=\ln (x+1), \quad a=0\)
All the tools & learning materials you need for study success - in one app.
Get started for freeQuartic Polynomial Functions Let \(f(x)=\) \(a x^{4}+b x^{3}+c x^{2}+d x+e\) with \(a \neq 0\) (a) Show that the graph of \(f\) has 0 or 2 points of inflection. (b) Write a condition that must be satisfied by the coefficients if the graph of \(f\) has 0 or 2 points of inflection.
Formulas for Differentials Verify the following formulas. (a) \(d(c)=0(c\) a constant \()\) (b) \(d(c u)=c d u(c\) a constant \()\) (c) \(d(u+v)=d u+d v\) (d) \(d(u \cdot v)=u d v+v d u\) (e) \(d\left(\frac{u}{v}\right)=\frac{v d u-u d v}{v^{2}}\) (f) \(d\left(u^{n}\right)=n u^{n-1} d u\)
You may use a graphing calculator to solve the following problems. $$ \begin{array}{l}{\text { True or False If } f \text { is differentiable and increasing on }(a, b),} \\ {\text { then } f^{\prime}(c)>0 \text { for every } c \text { in }(a, b) . \text { Justify your answer. }}\end{array} $$
You may use a graphing calculator to solve the following problems. True or False If the radius of a circle is expanding at a constant rate, then its circumference is increasing at a constant rate. Justify your answer.
How We Cough When we cough, the trachea (windpipe) contracts to increase the velocity of the air going out. This raises the question of how much it should contract to maximize the velocity and whether it really contracts that much when we cough. Under reasonable assumptions about the elasticity of the tracheal wall and about how the air near the wall is slowed by friction, the average flow velocity \(v(\) in \(\mathrm{cm} / \mathrm{sec})\) can be modeled by the equation $$v=c\left(r_{0}-r\right) r^{2}, \quad \frac{r_{0}}{2} \leq r \leq r_{0}$$ where \(r_{0}\) is the rest radius of the trachea in \(\mathrm{cm}\) and \(c\) is a positive constant whose value depends in part on the length of the trachea. (a) Show that \(v\) is greatest when \(r=(2 / 3) r_{0},\) that is, when the trachea is about 33\(\%\) contracted. The remarkable fact is that \(X\) -ray photographs confirm that the trachea contracts about this much during a cough. (b) Take \(r_{0}\) to be 0.5 and \(c\) to be \(1,\) and graph \(v\) over the interval \(0 \leq r \leq 0.5 .\) Compare what you see to the claim that \(v\) is a maximum when \(r=(2 / 3) r_{0}\) .
What do you think about this solution?
We value your feedback to improve our textbook solutions.