Chapter 4: Problem 38
In Exercises \(33-38\) , use the Second Derivative Test to find the local extrema for the function. $$y=x e^{-x}$$
Chapter 4: Problem 38
In Exercises \(33-38\) , use the Second Derivative Test to find the local extrema for the function. $$y=x e^{-x}$$
All the tools & learning materials you need for study success - in one app.
Get started for freeYou may use a graphing calculator to solve the following problems. True or False If the radius of a circle is expanding at a constant rate, then its circumference is increasing at a constant rate. Justify your answer.
Expanding Circle The radius of a circle is increased from 2.00 to 2.02 \(\mathrm{m} .\) (a) Estimate the resulting change in area. (b) Estimate as a percentage of the circle's original area.
The Effect of Flight Maneuvers on the Heart The amount of work done by the heart's main pumping chamber, the left ventricle, is given by the equation $$W=P V+\frac{V \delta v^{2}}{2 g}$$ where \(W\) is the work per unit time, \(P\) is the average blood pressure, \(V\) is the volume of blood pumped out during the unit of time, \(\delta("\) delta") is the density of the blood, \(v\) is the average velocity of the exiting blood, and \(g\) is the acceleration of gravity. When \(P, V, \delta,\) and \(v\) remain constant, \(W\) becomes a function of \(g,\) and the equation takes the simplified form $$W=a+\frac{b}{g}(a, b\( constant \))$$ As a member of NASA's medical team, you want to know how sensitive \(W\) is to apparent changes in \(g\) caused by flight maneuvers, and this depends on the initial value of \(g\) . As part of your investigation, you decide to compare the effect on \(W\) of a given change \(d g\) on the moon, where \(g=5.2 \mathrm{ft} / \mathrm{sec}^{2},\) with the effect the same change \(d g\) would have on Earth, where \(g=32\) \(\mathrm{ft} / \mathrm{sec}^{2} .\) Use the simplified equation above to find the ratio of \(d W_{\mathrm{moon}}\) to \(d W_{\mathrm{Earth}}\)
Draining Conical Reservoir Water is flowing at the rate of 50 \(\mathrm{m}^{3} / \mathrm{min}\) from a concrete conical reservoir (vertex down) of base radius 45 \(\mathrm{m}\) and height 6 \(\mathrm{m} .\) (a) How fast is the water level falling when the water is 5 \(\mathrm{m}\) deep? (b) How fast is the radius of the water's surface changing at that moment? Give your answer in \(\mathrm{cm} / \mathrm{min.}\)
Writing to Learn The function $$ f(x)=\left\\{\begin{array}{ll}{x,} & {0 \leq x<1} \\ {0,} & {x=1}\end{array}\right. $$ is zero at \(x=0\) and at \(x=1 .\) Its derivative is equal to 1 at every point between 0 and \(1,\) so \(f^{\prime}\) is never zero between 0 and 1 and the graph of \(f\) has no tangent parallel to the chord from \((0,0)\) to \((1,0) .\) Explain why this does not contradict the Mean Value Theorem.
What do you think about this solution?
We value your feedback to improve our textbook solutions.