Chapter 4: Problem 37
In Exercises \(35-38\) , find the function with the given derivative whose graph passes through the point \(P\) . $$f^{\prime}(x)=\frac{1}{x+2}, \quad x>-2, \quad P(-1,3)$$
Chapter 4: Problem 37
In Exercises \(35-38\) , find the function with the given derivative whose graph passes through the point \(P\) . $$f^{\prime}(x)=\frac{1}{x+2}, \quad x>-2, \quad P(-1,3)$$
All the tools & learning materials you need for study success - in one app.
Get started for free$$ \begin{array}{l}{\text { Analyzing Motion Data Priya's distance } D \text { in meters from a }} \\ {\text { motion detector is given by the data in Table 4.1. }}\end{array} $$ $$ \begin{array}{llll}{t(\text { sec) }} & {D(\mathrm{m})} & {t(\mathrm{sec})} & {D(\mathrm{m})} \\ \hline 0.0 & {3.36} & {4.5} & {3.59} \\ {0.5} & {2.61} & {5.0} & {4.15} \\ {1.0} & {1.86} & {5.5} & {3.99} \\ {1.5} & {1.27} & {6.0} & {3.37}\end{array} $$ $$ \begin{array}{llll}{2.0} & {0.91} & {6.5} & {2.58} \\ {2.5} & {1.14} & {7.0} & {1.93} \\ {3.0} & {1.69} & {7.5} & {1.25} \\ {3.5} & {2.37} & {8.0} & {0.67} \\ {4.0} & {3.01}\end{array} $$ $$ \begin{array}{l}{\text { (a) Estimate when Priya is moving toward the motion detector; }} \\ {\text { away from the motion detector. }} \\ {\text { (b) Writing to Learn Give an interpretation of any local }} \\ {\text { extreme values in terms of this problem situation. }}\end{array} $$ $$ \begin{array}{l}{\text { (c) Find a cubic regression equation } D=f(t) \text { for the data in }} \\ {\text { Table } 4.1 \text { and superimpose its graph on a scatter plot of the data. }} \\ {\text { (d) Use the model in (c) for } f \text { to find a formula for } f^{\prime} . \text { Use this }} \\ {\text { formula to estimate the answers to (a). }}\end{array} $$
Minting Coins A manufacturer contracts to mint coins for the federal government. The coins must weigh within 0.1\(\%\) of their ideal weight, so the volume must be within 0.1\(\%\) of the ideal volume. Assuming the thickness of the coins does not change, what is the percentage change in the volume of the coin that would result from a 0.1\(\%\) increase in the radius?
$$ \begin{array}{l}{\text { Multiple Choice If } f(x)=\cos x, \text { then the Mean Value }} \\ {\text { Theorem guarantees that somewhere between } 0 \text { and } \pi / 3, f^{\prime}(x)=} \\ {\text { (A) }-\frac{3}{2 \pi} \quad \text { (B) }-\frac{\sqrt{3}}{2} \quad(\mathbf{C})-\frac{1}{2} \quad \text { (D) } 0}\end{array} $$
Draining Conical Reservoir Water is flowing at the rate of 50 \(\mathrm{m}^{3} / \mathrm{min}\) from a concrete conical reservoir (vertex down) of base radius 45 \(\mathrm{m}\) and height 6 \(\mathrm{m} .\) (a) How fast is the water level falling when the water is 5 \(\mathrm{m}\) deep? (b) How fast is the radius of the water's surface changing at that moment? Give your answer in \(\mathrm{cm} / \mathrm{min.}\)
sign of \(f^{\prime}\) Assume that \(f\) is differentiable on \(a \leq x \leq b\) and that \(f(\)b\()<$$f$$(\)a\()\). Show that \(f^{\prime}\) is negative at some point between \(a\) and \(b\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.