Chapter 4: Problem 37
In Exercises \(33-38\) , use the Second Derivative Test to find the local extrema for the function. $$y=x e^{x}$$
Chapter 4: Problem 37
In Exercises \(33-38\) , use the Second Derivative Test to find the local extrema for the function. $$y=x e^{x}$$
All the tools & learning materials you need for study success - in one app.
Get started for freeMotion on a Line The positions of two particles on the \(s\) -axis are \(s_{1}=\sin t\) and \(s_{2}=\sin (t+\pi / 3),\) with \(s_{1}\) and \(s_{2}\) in meters and \(t\) in seconds. (a) At what time \((\mathrm{s})\) in the interval \(0 \leq t \leq 2 \pi\) do the particles meet? (b) What is the farthest apart that the particles ever get? (c) When in the interval \(0 \leq t \leq 2 \pi\) is the distance between the particles changing the fastest?
Airplane Landing Path An airplane is flying at altitude \(H\) when it begins its descent to an airport runway that is at horizontal ground distance \(L\) from the airplane, as shown in the figure. Assume that the landing path of the airplane is the graph of a cubic polynomial function \(y=a x^{3}+b x^{2}+c x+d\) where \(y(-L)=H\) and \(y(0)=0 .\) (a) What is \(d y / d x\) at \(x=0 ?\) (b) What is \(d y / d x\) at \(x=-L ?\) (c) Use the values for \(d y / d x\) at \(x=0\) and \(x=-L\) together with \(y(0)=0\) and \(y(-L)=H\) to show that $$y(x)=H\left[2\left(\frac{x}{L}\right)^{3}+3\left(\frac{x}{L}\right)^{2}\right]$$
Writing to Learn Is the function \(f(x)=x^{2}-x+1\) ever negative? Explain
You may use a graphing calculator to solve the following problems. True or False If the radius of a circle is expanding at a constant rate, then its circumference is increasing at a constant rate. Justify your answer.
$$ \begin{array}{l}{\text { Multiple Choice If } f(x)=\cos x, \text { then the Mean Value }} \\ {\text { Theorem guarantees that somewhere between } 0 \text { and } \pi / 3, f^{\prime}(x)=} \\ {\text { (A) }-\frac{3}{2 \pi} \quad \text { (B) }-\frac{\sqrt{3}}{2} \quad(\mathbf{C})-\frac{1}{2} \quad \text { (D) } 0}\end{array} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.