Chapter 4: Problem 36
Inscribing a Cone Find the volume of the largest right circular cone that can be inscribed in a sphere of radius 3.
Chapter 4: Problem 36
Inscribing a Cone Find the volume of the largest right circular cone that can be inscribed in a sphere of radius 3.
All the tools & learning materials you need for study success - in one app.
Get started for freeLinearization Show that the approximation of tan \(x\) by its linearization at the origin must improve as \(x \rightarrow 0\) by showing that $$\lim _{x \rightarrow 0} \frac{\tan x}{x}=1$$
$$ \begin{array}{l}{\text { True or False If } f \text { is differentiable and } f^{\prime}(c)>0 \text { for every } c \text { in }} \\ {(a, b), \text { then } f \text { is increasing on }(a, b) . \text { Justify your answer. }}\end{array} $$
Multiple Choice A cylindrical rubber cord is stretched at a constant rate of 2 \(\mathrm{cm}\) per second. Assuming its volume does no change, how fast is its radius shrinking when its length is 100 \(\mathrm{c}\) and its radius is 1 \(\mathrm{cm} ?\) $$\begin{array}{ll}{\text { (A) } 0 \mathrm{cm} / \mathrm{sec}} & {\text { (B) } 0.01 \mathrm{cm} / \mathrm{sec}} 67 {\text{ (C) } 0.02 \mathrm{cm} / \mathrm{sec}}$\\\ {\text { (D) } 2 \mathrm{cm} / \mathrm{sec}} & {\text { (E) } 3.979 \mathrm{cm} / \mathrm{sec}}\end{array}
Arithmetic Mean The arithmetic mean of two numbers \(a\) and \(b\) is \((a+b) / 2 .\) Show that for \(f(x)=x^{2}\) on any interval \([a, b],\) the value of \(c\) in the conclusion of the Mean Value Theorem is \(c=(a+b) / 2 .\)
Draining Conical Reservoir Water is flowing at the rate of 50 \(\mathrm{m}^{3} / \mathrm{min}\) from a concrete conical reservoir (vertex down) of base radius 45 \(\mathrm{m}\) and height 6 \(\mathrm{m} .\) (a) How fast is the water level falling when the water is 5 \(\mathrm{m}\) deep? (b) How fast is the radius of the water's surface changing at that moment? Give your answer in \(\mathrm{cm} / \mathrm{min.}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.