Chapter 4: Problem 36
In Exercises \(35-42,\) identify the critical point and determine the local extreme values. $$y=x^{2 / 3}\left(x^{2}-4\right)$$
Chapter 4: Problem 36
In Exercises \(35-42,\) identify the critical point and determine the local extreme values. $$y=x^{2 / 3}\left(x^{2}-4\right)$$
All the tools & learning materials you need for study success - in one app.
Get started for freeParticle Motion A particle \(P(x, y)\) is moving in the co- ordinate plane in such a way that \(d x / d t=-1 \mathrm{m} / \mathrm{sec}\) and \(d y / d t=-5 \mathrm{m} / \mathrm{sec} .\) How fast is the particle's distance from the origin changing as it passes through the point \((5,12) ?\)
Tolerance The height and radius of a right circular cylinder are equal, so the cylinder's volume is \(V=\pi h^{3} .\) The volume is to be calculated with an error of no more than 1\(\%\) of the true value. Find approximately the greatest error that can be tolerated in the measurement of \(h,\) expressed as a percentage of \(h .\)
Strength of a Beam The strength S of a rectangular wooden beam is proportional to its width times the square of its depth. (a) Find the dimensions of the strongest beam that can be cut from a 12-in. diameter cylindrical log. (b) Writing to Learn Graph \(S\) as a function of the beam's width \(w,\) assuming the proportionality constant to be \(k=1 .\) Reconcile what you see with your answer in part (a). (c) Writing to Learn On the same screen, graph \(S\) as a function of the beam's depth \(d,\) again taking \(k=1 .\) Compare the graphs with one another and with your answer in part (a). What would be the effect of changing to some other value of \(k ?\) Try it.
Draining Conical Reservoir Water is flowing at the rate of 50 \(\mathrm{m}^{3} / \mathrm{min}\) from a concrete conical reservoir (vertex down) of base radius 45 \(\mathrm{m}\) and height 6 \(\mathrm{m} .\) (a) How fast is the water level falling when the water is 5 \(\mathrm{m}\) deep? (b) How fast is the radius of the water's surface changing at that moment? Give your answer in \(\mathrm{cm} / \mathrm{min.}\)
\(f\) is an even function, continuous on \([-3,3],\) and satisfies the following. (d) What can you conclude about \(f(3)\) and \(f(-3) ?\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.