Chapter 4: Problem 36
In Exercises \(33-38\) , use the Second Derivative Test to find the local extrema for the function. $$y=3 x^{5}-25 x^{3}+60 x+20$$
Chapter 4: Problem 36
In Exercises \(33-38\) , use the Second Derivative Test to find the local extrema for the function. $$y=3 x^{5}-25 x^{3}+60 x+20$$
All the tools & learning materials you need for study success - in one app.
Get started for freeInscribing a Cone Find the volume of the largest right circular cone that can be inscribed in a sphere of radius 3.
Multiple Choice A particle is moving around the unit circle (the circle of radius 1 centered at the origin). At the point \((0.6,\) 0.8\()\) the particle has horizontal velocity \(d x / d t=3 .\) What is its vertical velocity \(d y / d t\) at that point? \(\begin{array}{lllll}{\text { (A) }-3.875} & {\text { (B) }-3.75} & {\text { (C) }-2.25} & {\text { (D) } 3.75} & {\text { (E) } 3.875}\end{array}\)
Motion on a Line The positions of two particles on the \(s\) -axis are \(s_{1}=\sin t\) and \(s_{2}=\sin (t+\pi / 3),\) with \(s_{1}\) and \(s_{2}\) in meters and \(t\) in seconds. (a) At what time \((\mathrm{s})\) in the interval \(0 \leq t \leq 2 \pi\) do the particles meet? (b) What is the farthest apart that the particles ever get? (c) When in the interval \(0 \leq t \leq 2 \pi\) is the distance between the particles changing the fastest?
Strength of a Beam The strength S of a rectangular wooden beam is proportional to its width times the square of its depth. (a) Find the dimensions of the strongest beam that can be cut from a 12-in. diameter cylindrical log. (b) Writing to Learn Graph \(S\) as a function of the beam's width \(w,\) assuming the proportionality constant to be \(k=1 .\) Reconcile what you see with your answer in part (a). (c) Writing to Learn On the same screen, graph \(S\) as a function of the beam's depth \(d,\) again taking \(k=1 .\) Compare the graphs with one another and with your answer in part (a). What would be the effect of changing to some other value of \(k ?\) Try it.
Writing to Learn Find the linearization of \(f(x)=\sqrt{x+1}+\sin x\) at \(x=0 .\) How is it related to the individual linearizations for \(\sqrt{x+1}\) and \(\sin x ?\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.