Chapter 4: Problem 35
In Exercises \(35-42,\) identify the critical point and determine the local extreme values. $$y=x^{2 / 3}(x+2)$$
Chapter 4: Problem 35
In Exercises \(35-42,\) identify the critical point and determine the local extreme values. $$y=x^{2 / 3}(x+2)$$
All the tools & learning materials you need for study success - in one app.
Get started for freeAirplane Landing Path An airplane is flying at altitude \(H\) when it begins its descent to an airport runway that is at horizontal ground distance \(L\) from the airplane, as shown in the figure. Assume that the landing path of the airplane is the graph of a cubic polynomial function \(y=a x^{3}+b x^{2}+c x+d\) where \(y(-L)=H\) and \(y(0)=0 .\) (a) What is \(d y / d x\) at \(x=0 ?\) (b) What is \(d y / d x\) at \(x=-L ?\) (c) Use the values for \(d y / d x\) at \(x=0\) and \(x=-L\) together with \(y(0)=0\) and \(y(-L)=H\) to show that $$y(x)=H\left[2\left(\frac{x}{L}\right)^{3}+3\left(\frac{x}{L}\right)^{2}\right]$$
Newton's Method Suppose your first guess in using Newton's method is lucky in the sense that \(x_{1}\) is a root of \(f(x)=0 .\) What happens to \(x_{2}\) and later approximations?
Moving Shadow A light shines from the top of a pole 50 ft high. A ball is dropped from the same height from a point 30 ft away from the light as shown below. How fast is the ball's shadow moving along the ground 1\(/ 2\) sec later? (Assume the ball falls a distance \(s=16 t^{2}\) in \(t\) sec. $)
Writing to Learn You have been asked to determine whether the function \(f(x)=3+4 \cos x+\cos 2 x\) is ever negative. (a) Explain why you need to consider values of \(x\) only in the interval \([0,2 \pi] . \quad\) (b) Is f ever negative? Explain.
The domain of f^{\prime}\( is \)[0,1) \cup(1,2) \cup(2,3]
What do you think about this solution?
We value your feedback to improve our textbook solutions.