Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises \(33-38\) , use the Second Derivative Test to find the local extrema for the function. $$y=x^{5}-80 x+100$$

Short Answer

Expert verified
The function \(y = x^{5}-80x+100\) has a local minimum at \(x = 2\) and a local maximum at \(x = -2\).

Step by step solution

01

Finding the First Derivative

The first derivative of the function \(y = x^{5}-80x+100\) is computed using the power rule, which gives \(y' = 5x^{4}-80\).
02

Finding the Critical Points

Setting the first derivative equal to zero and solving for x will give the critical points. \(0 = 5x^{4}-80\) yields \(x^{4} = 16\) so \(x = \sqrt[4]{16}\). Therefore, the critical points are \(x = 2\) and \(x = -2\).
03

Finding the Second Derivative

The second derivative of the function is obtained by differentiating the first derivative. This gives \(y'' = 20x^{3}\).
04

Applying the Second Derivative Test

Substituting the critical points into the second derivative, we get \(y''(2) = 20(2^{3}) = 160\) which is positive, hence by the Second Derivative Test, \(x = 2\) is a local minimum. Similarly, \(y''(-2) = 20(-2^{3}) = -160\) which is negative, hence by the Second Derivative Test, \(x = -2\) is a local maximum.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Production Level Suppose \(c(x)=x^{3}-20 x^{2}+20,000 x\) is the cost of manufacturing \(x\) items. Find a production level that will minimize the average cost of making \(x\) items.

Group Activity Cardiac Output In the late 1860 s, Adolf Fick, a professor of physiology in the Faculty of Medicine in Wurtzberg, Germany, developed one of the methods we use today for measuring how much blood your heart pumps in a minute. Your cardiac output as you read this sentence is probably about 7 liters a minute. At rest it is likely to be a bit under 6 \(\mathrm{L} / \mathrm{min}\) . If you are a trained marathon runner running a marathon, your cardiac output can be as high as 30 \(\mathrm{L} / \mathrm{min.}\) Your cardiac output can be calculated with the formula $$$=\frac{Q}{D}$$ where \(Q\) is the number of milliliters of \(\mathrm{CO}_{2}\) you exhale in a minute and \(D\) is the difference between the \(\mathrm{CO}_{2}\) concentration \((\mathrm{mL} / \mathrm{L})\) in the blood pumped to the lungs and the \(\mathrm{CO}_{2}\) concentration in the blood returning from the lungs. With \(Q=233 \mathrm{mL} / \mathrm{min}\) and \(D=97-56=41 \mathrm{mL} / \mathrm{L}\) $$y=\frac{233 \mathrm{mL} / \mathrm{min}}{41 \mathrm{mL} / \mathrm{L}} \approx 5.68 \mathrm{L} / \mathrm{min}$$ fairly close to the 6 \(\mathrm{L} / \mathrm{min}\) that most people have at basal (resting) conditions. (Data courtesy of J. Kenneth Herd, M.D. Quillan College of Medicine, East Tennessee State University.) Suppose that when \(Q=233\) and \(D=41,\) we also know that \(D\) is decreasing at the rate of 2 units a minute but that \(Q\) remains unchanged. What is happening to the cardiac output?

Multiple Choice What is the maximum area of a right triangle with hypotenuse 10? \(\begin{array}{llll}{\text { (A) } 24} & {\text { (B) } 25} & {\text { (C) } 25 \sqrt{2}} & {\text { (D) } 48} & {\text { (E) } 50}\end{array}\)

Particle Motion A particle moves along the parabola \(y=x^{2}\) in the first quadrant in such a way that its \(x\) -coordinate (in meters) increases at a constant rate of 10 \(\mathrm{m} / \mathrm{sec} .\) How fast is the angle of inclination \(\theta\) of theline joining the particle to the origin changing when \(x=3 ?\)

Writing to Learn Find the linearization of \(f(x)=\sqrt{x+1}+\sin x\) at \(x=0 .\) How is it related to the individual linearizations for \(\sqrt{x+1}\) and \(\sin x ?\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free