Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

\(f(x)=x^{3}-x, \quad a=1, \quad d x=0.1\)

Short Answer

Expert verified
The differential of the function \(f(x) = x^{3} - x\) at \(x = 1\) and \(dx = 0.1\) is 0.2.

Step by step solution

01

Calculate the derivative of the function

First, calculate the derivative of the function \(f(x) = x^3 - x\). The derivative of the function can be computed using basic calculus rules, and is \(f'(x) = 3x^{2} - 1\).
02

Compute f'(a)

The next step is to compute \(f'(a)\). Here, \(a = 1\), thus \(f'(1) = 3(1)^{2} - 1 = 3 - 1 = 2\).
03

Determine the differential

One can find the differential of a function \(df(x)\) at a point \(x = a\) using the formula \(df(a) = f'(a) dx\). With \(f'(1) = 2\) and \(dx = 0.1\), we have \(df(1) = 2 * 0.1 = 0.2\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

$$ \begin{array}{l}{\text { Multiple Choice Which of the following functions is an }} \\ {\text { antiderivative of } \frac{1}{\sqrt{x}} ? \quad \mathrm{}}\end{array} $$ $$ (\mathbf{A})-\frac{1}{\sqrt{2 x^{3}}}(\mathbf{B})-\frac{2}{\sqrt{x}} \quad(\mathbf{C}) \frac{\sqrt{x}}{2}(\mathbf{D}) \sqrt{x}+5(\mathbf{E}) 2 \sqrt{x}-10 $$

True or False If the radius of a circle is expanding at a constant rate, then its area is increasing at a constant rate. Justify your answer.

Vertical Motion Two masses hanging side by side from springs have positions \(s_{1}=2 \sin t\) and \(s_{2}=\sin 2 t\) respectively, with \(s_{1}\) and \(s_{2}\) in meters and \(t\) in seconds. (a) At what times in the interval \(t>0\) do the masses pass each other? [Hint: \(\sin 2 t=2 \sin t \cos t ]\) (b) When in the interval \(0 \leq t \leq 2 \pi\) is the vertical distance between the masses the greatest? What is this distance? (Hint: \(\cos 2 t=2 \cos ^{2} t-1 . )\)

Moving Ships Two ships are steaming away from a point \(O\) along routes that make a \(120^{\circ}\) angle. Ship \(A\) moves at 14 knots (nautical miles per hour; a nautical mile is 2000 yards). Ship \(B\) moves at 21 knots. How fast are the ships moving apart when \(O A=5\) and \(O B=3\) nautical miles? 29.5 knots

Tolerance (a) About how accurately must the interior diameter of a 10 -m high cylindrical storage tank be measured to calculate the tank's volume to within 1\(\%\) of its true value? (b) About how accurately must the tank's exterior diameter be measured to calculate the amount of paint it will take to paint the side of the tank to within 5\(\%\) of the true amount?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free