Chapter 4: Problem 30
In Exercises \(19-30\) , find the extreme values of the function and where they occur. $$y=\frac{x+1}{x^{2}+2 x+2}$$
Chapter 4: Problem 30
In Exercises \(19-30\) , find the extreme values of the function and where they occur. $$y=\frac{x+1}{x^{2}+2 x+2}$$
All the tools & learning materials you need for study success - in one app.
Get started for freeStrength of a Beam The strength S of a rectangular wooden beam is proportional to its width times the square of its depth. (a) Find the dimensions of the strongest beam that can be cut from a 12-in. diameter cylindrical log. (b) Writing to Learn Graph \(S\) as a function of the beam's width \(w,\) assuming the proportionality constant to be \(k=1 .\) Reconcile what you see with your answer in part (a). (c) Writing to Learn On the same screen, graph \(S\) as a function of the beam's depth \(d,\) again taking \(k=1 .\) Compare the graphs with one another and with your answer in part (a). What would be the effect of changing to some other value of \(k ?\) Try it.
Formulas for Differentials Verify the following formulas. (a) \(d(c)=0(c\) a constant \()\) (b) \(d(c u)=c d u(c\) a constant \()\) (c) \(d(u+v)=d u+d v\) (d) \(d(u \cdot v)=u d v+v d u\) (e) \(d\left(\frac{u}{v}\right)=\frac{v d u-u d v}{v^{2}}\) (f) \(d\left(u^{n}\right)=n u^{n-1} d u\)
Multiple Choice A particle is moving around the unit circle (the circle of radius 1 centered at the origin). At the point \((0.6,\) 0.8\()\) the particle has horizontal velocity \(d x / d t=3 .\) What is its vertical velocity \(d y / d t\) at that point? \(\begin{array}{lllll}{\text { (A) }-3.875} & {\text { (B) }-3.75} & {\text { (C) }-2.25} & {\text { (D) } 3.75} & {\text { (E) } 3.875}\end{array}\)
Multiple Choice Two positive numbers have a sum of 60. What is the maximum product of one number times the square of the second number? (a) 3481 (b) 3600 (c) 27,000 (d) 32,000 (e) 36,000
Calculus and Geometry How close does the semicircle \(y=\sqrt{16-x^{2}}\) come to the point \((1, \sqrt{3}) ?\) ?
What do you think about this solution?
We value your feedback to improve our textbook solutions.