Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

\(d\left(8^{x}+x^{8}\right)\)

Short Answer

Expert verified
The derivative of the given function \(8^{x}+x^{8}\) is \(\ln(8)*8^{x} + 8x^{7}\)

Step by step solution

01

Identify the two terms in the function

The function given is \(8^{x}+x^{8}\). This is a sum of two individual terms, \(8^{x}\) and \(x^{8}\) which will be handled separately.
02

Differentiate the first term

The first term \(8^{x}\) is an exponential term. Using the rule for exponential differentiation, \(d\left(a^{x}\right) = \ln(a)*a^{x}\), the differential of \(8^{x}\) is \(d\left(8^{x}\right) = \ln(8)*8^{x}\)
03

Differentiate the second term

The second term \(x^{8}\) is a power term. Using the rule of power differentiation, \(d\left(x^{n}\right) = nx^{n-1}\), the differential of \(x^{8}\) is \(d\left(x^{8}\right) = 8x^{7}\)
04

Combine the differentiated terms

The total derivative is the sum of derivatives we got from step 2 and step 3, which gives us the final answer: \(d\left(8^{x}+x^{8}\right) = d\left(8^{x}\right) + d\left(x^{8}\right) = \ln(8)*8^{x} + 8x^{7}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Oscillation Show that if \(h>0,\) applying Newton's method to $$f(x)=\left\\{\begin{array}{ll}{\sqrt{x},} & {x \geq 0} \\ {\sqrt{-x},} & {x<0}\end{array}\right.$$ leads to \(x_{2}=-h\) if \(x_{1}=h,\) and to \(x_{2}=h\) if \(x_{1}=-h\) Draw a picture that shows what is going on.

Particle Motion A particle moves along the parabola \(y=x^{2}\) in the first quadrant in such a way that its \(x\) -coordinate (in meters) increases at a constant rate of 10 \(\mathrm{m} / \mathrm{sec} .\) How fast is the angle of inclination \(\theta\) of theline joining the particle to the origin changing when \(x=3 ?\)

\(f\) is an even function, continuous on \([-3,3],\) and satisfies the following. (d) What can you conclude about \(f(3)\) and \(f(-3) ?\)

Multiples of \(P i\) Store any number as \(X\) in your calculator. Then enter the command \(X-\tan (X) \rightarrow X\) and press the ENTER key repeatedly until the displayed value stops changing. The result is always an integral multiple of \(\pi .\) Why is this so? [Hint: These are zeros of the sine function.]

Tin Pest When metallic tin is kept below \(13.2^{\circ} \mathrm{C}\) it slowly becomes brittle and crumbles to a gray powder. Tin objects eventually crumble to this gray powder spontaneously if kept in a cold climate for years. The Europeans who saw tin organ pipes in their churches crumble away years ago called the change tin pest because it seemed to be contagious. And indeed it was, for the gray powder is a catalyst for its own formation. A catalyst for a chemical reaction is a substance that controls the rate of reaction without undergoing any permanent change in itself. An autocatalytic reaction is one whose product is a catalyst for its own formation. Such a reaction may proceed slowly at first if the amount of catalyst present is small and slowly again at the end, when most of the original substance is used up. But in between, when both the substance and its catalyst product are abundant, the reaction proceeds at a faster pace. In some cases it is reasonable to assume that the rate \(v=d x / d t\) of the reaction is proportional both to the amount of the original substance present and to the amount of product. That is, \(v\) may be considered to be a function of \(x\) alone, and $$v=k x(a-x)=k a x-k x^{2}$$ where \(\begin{aligned} x &=\text { the amount of product, } \\ a &=\text { the amount of substance at the beginning, } \\ k &=\text { a positive constant. } \end{aligned}\) At what value of \(x\) does the rate \(v\) have a maximum? What is the maximum value of \(v ?\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free