Chapter 4: Problem 29
In Exercises \(19-30\) , find the extreme values of the function and where they occur. $$y=\frac{x}{x^{2}+1}$$
Chapter 4: Problem 29
In Exercises \(19-30\) , find the extreme values of the function and where they occur. $$y=\frac{x}{x^{2}+1}$$
All the tools & learning materials you need for study success - in one app.
Get started for free\(f\) is an even function, continuous on \([-3,3],\) and satisfies the following. (d) What can you conclude about \(f(3)\) and \(f(-3) ?\)
Multiple Choice If the volume of a cube is increasing at 24 \(\mathrm{in}^{3} / \mathrm{min}\) and the surface area of the cube is increasing at 12 \(\mathrm{in}^{2} / \mathrm{min}\) , what is the length of each edge of the cube? \(\mathrm{}\) \(\begin{array}{lll}{\text { (A) } 2 \text { in. }} & {\text { (B) } 2 \sqrt{2} \text { in. (C) } \sqrt[3]{12} \text { in. (D) } 4 \text { in. }}\end{array}\)
Quadratic Approximations (a) Let \(Q(x)=b_{0}+b_{1}(x-a)+b_{2}(x-a)^{2}\) be a quadratic approximation to \(f(x)\) at \(x=a\) with the properties: \(\begin{aligned} \text { i. } Q(a) &=f(a) \\ \text { ii. } Q^{\prime}(a) &=f^{\prime}(a) \\ \text { ii. } & Q^{\prime \prime}(a)=f^{\prime \prime}(a) \end{aligned}\) Determine the coefficients \(b_{0}, b_{1},\) and \(b_{2}\) (b) Find the quadratic approximation to \(f(x)=1 /(1-x)\) at \(x=0 .\) (c) Graph \(f(x)=1 /(1-x)\) and its quadratic approximation at \(x=0 .\) Then zoom in on the two graphs at the point \((0,1) .\) Comment on what you see. (d) Find the quadratic approximation to \(g(x)=1 / x\) at \(x=1\) Graph \(g\) and its quadratic approximation together. Comment on what you see. (e) Find the quadratic approximation to \(h(x)=\sqrt{1+x}\) at \(x=0 .\) Graph \(h\) and its quadratic approximation together. Comment on what you see. (f) What are the linearizations of \(f, g,\) and \(h\) at the respective points in parts \((b),(d),\) and \((e) ?\)
Industrial Production (a) Economists often use the expression expression "rate of growth" in relative rather than absolute terms. For example, let \(u=f(t)\) be the number of people in the labor force at time \(t\) in a given industry. (We treat this function as though it were differentiable even though it is an integer-valued step function.) Let \(v=g(t)\) be the average production per person in the labor force at time \(t .\) The total production is then \(y=u v\) . If the labor force is growing at the rate of 4\(\%\) per year year \((d u / d t=\) 0.04\(u\) ) and the production per worker is growing at the rate of 5\(\%\) per year \((d v / d t=0.05 v),\) find the rate of growth of the total production, y. (b) Suppose that the labor force in part (a) is decreasing at the rate of 2\(\%\) per year while the production per person is increasing at the rate of 3\(\%\) per year. Is the total production increasing, or is it decreasing, and at what rate?
Calculus and Geometry How close does the curve \(y=\sqrt{x}\) come to the point \((3 / 2,0) ?[\)Hint: If you minimize the square of the distance, you can avoid square roots.
What do you think about this solution?
We value your feedback to improve our textbook solutions.