Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises \(23-28\) , find (a) the local extrema, (b) the intervals on which the function is increasing, and (c) the intervals on which the function is decreasing. $$g(x)=2 x+\cos x$$

Short Answer

Expert verified
The function \(g(x) = 2x + \cos (x)\) has no local extrema, is increasing over the interval \((- \infty, \infty)\), and doesn't decrease at any interval.

Step by step solution

01

Obtain the derivative

Differentiate the function \(g(x)\). The derivative of \(g(x) = 2x + \cos (x)\) with respect to \(x\) is given by \(g'(x) = 2 - \sin(x)\).
02

Find the critical points

Critical points occur in a function when its derivative is either zero or undefined. So, solve \(g'(x) = 0\) for \(x\). \nThis gives: \n\(2 - \sin(x) = 0\). \nHence, \(\sin(x) = 2\). \nHowever, the sine function outputs values between -1 and 1. So, there are no solutions to this equation; implying there are no critical points. Hence, there are no local extrema.
03

Find the intervals of increasing and decreasing

Given that there are no critical points, meaning there are no turning points or horizontal tangents, the function \(g(x) = 2x + \cos (x)\) will be either decreasing or increasing across its entire domain. Since \(g'(x) = 2 - \sin(x)\) is always greater than zero for all \(x\) as its minimum value is \(2 - 1 = 1\), the function \(g(x) = 2x + \cos (x)\) is increasing over the interval \((- \infty, \infty)\).
04

Conclusion

Therefore, the function \(g(x) = 2x + \cos (x)\) has no local extrema, always increasing over the interval \((- \infty, \infty)\), and doesn't decrease at any interval.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Draining Hemispherical Reservoir Water is flowing at the rate of 6 \(\mathrm{m}^{3} / \mathrm{min}\) from a reservoir shaped like a hemispherical bowl of radius \(13 \mathrm{m},\) shown here in profile. Answer the following questions given that the volume of water in a hemispherical bowl of radius \(R\) is \(V=(\pi / 3) y^{2}(3 R-y)\) when the water is \(y\) units deep. (a) At what rate is the water level changing when the water is 8 m deep? (b) What is the radius \(r\) of the water's surface when the water is \(y\) m deep? (c) At what rate is the radius \(r\) changing when the water is 8 \(\mathrm{m}\) deep?

Group Activity In Exercises \(39-42,\) sketch a graph of a differentiable function \(y=f(x)\) that has the given properties. $$\begin{array}{l}{\text { A local minimum value that is greater than one of its local maxi- }} \\ {\text { mum values. }}\end{array}$$

Wilson Lot Size Formula One of the formulas for inventory management says that the average weekly cost of ordering, paying for, and holding merchandise is $$A(q)=\frac{k m}{q}+c m+\frac{h q}{2}$$ where \(q\) is the quantity you order when things run low (shoes, radios, brooms, or whatever the item might be), \(k\) is the cost of placing an order (the same, no matter how often you order), \(c\) is the cost of one item (a constant), \(m\) is the number of items sold each week (a constant), and \(h\) is the weekly holding cost per item (a constant that takes into account things such as space, utilities, insurance, and security). (a) Your job, as the inventory manager for your store, is to find the quantity that will minimize \(A(q) .\) What is it? (The formula you get for the answer is called the Wilson lot size formula.) (b) Shipping costs sometimes depend on order size. When they do, it is more realistic to replace \(k\) by \(k+b q,\) the sum of \(k\) and a constant multiple of \(q .\) What is the most economical quantity to order now?

sign of \(f^{\prime}\) Assume that \(f\) is differentiable on \(a \leq x \leq b\) and that \(f(\)b\()<$$f$$(\)a\()\). Show that \(f^{\prime}\) is negative at some point between \(a\) and \(b\).

Industrial Production (a) Economists often use the expression expression "rate of growth" in relative rather than absolute terms. For example, let \(u=f(t)\) be the number of people in the labor force at time \(t\) in a given industry. (We treat this function as though it were differentiable even though it is an integer-valued step function.) Let \(v=g(t)\) be the average production per person in the labor force at time \(t .\) The total production is then \(y=u v\) . If the labor force is growing at the rate of 4\(\%\) per year year \((d u / d t=\) 0.04\(u\) ) and the production per worker is growing at the rate of 5\(\%\) per year \((d v / d t=0.05 v),\) find the rate of growth of the total production, y. (b) Suppose that the labor force in part (a) is decreasing at the rate of 2\(\%\) per year while the production per person is increasing at the rate of 3\(\%\) per year. Is the total production increasing, or is it decreasing, and at what rate?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free