Chapter 4: Problem 24
In Exercises \(23-28\) , find (a) the local extrema, (b) the intervals on which the function is increasing, and (c) the intervals on which the function is decreasing. $$g(x)=x^{1 / 3}(x+8)$$
Chapter 4: Problem 24
In Exercises \(23-28\) , find (a) the local extrema, (b) the intervals on which the function is increasing, and (c) the intervals on which the function is decreasing. $$g(x)=x^{1 / 3}(x+8)$$
All the tools & learning materials you need for study success - in one app.
Get started for freePercentage Error The edge of a cube is measured as 10 \(\mathrm{cm}\) with an error of 1\(\%\) . The cube's volume is to be calculated from this measurement. Estimate the percentage error in the volume calculation.
Multiple Choice Two positive numbers have a sum of 60. What is the maximum product of one number times the square of the second number? (a) 3481 (b) 3600 (c) 27,000 (d) 32,000 (e) 36,000
Parallel Tangents Assume that \(f\) and \(g\) are differentiable on \([a, b]\) and that \(f(a)=g(a)\) and \(f(b)=g(b) .\) Show that there is at least one point between \(a\) and \(b\) where the tangents to the graphs of \(f\) and \(g\) are parallel or the same line. Illustrate with a sketch.
The Linearization is the Best Linear Approximation Suppose that \(y=f(x)\) is differentiable at \(x=a\) and that \(g(x)=m(x-a)+c(m\) and \(c\) constants). If the error \(E(x)=f(x)-g(x)\) were small enough near \(x=a,\) we might think of using \(g\) as a linear approximation of \(f\) instead of the linearization \(L(x)=f(a)+f^{\prime}(a)(x-a) .\) Show that if we impose on \(g\) the conditions i. \(E(a)=0\) ii. \(\lim _{x \rightarrow a} \frac{E(x)}{x-a}=0\) then \(g(x)=f(a)+f^{\prime}(a)(x-a) .\) Thus, the linearization gives the only linear approximation whose error is both zero at \(x=a\) and negligible in comparison with \((x-a)\) .
$$ \begin{array}{l}{\text { Multiple Choice Which of the following functions is an }} \\ {\text { antiderivative of } \frac{1}{\sqrt{x}} ? \quad \mathrm{}}\end{array} $$ $$ (\mathbf{A})-\frac{1}{\sqrt{2 x^{3}}}(\mathbf{B})-\frac{2}{\sqrt{x}} \quad(\mathbf{C}) \frac{\sqrt{x}}{2}(\mathbf{D}) \sqrt{x}+5(\mathbf{E}) 2 \sqrt{x}-10 $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.