Chapter 4: Problem 18
Draining Hemispherical Reservoir Water is flowing at the rate of 6 \(\mathrm{m}^{3} / \mathrm{min}\) from a reservoir shaped like a hemispherical bowl of radius \(13 \mathrm{m},\) shown here in profile. Answer the following questions given that the volume of water in a hemispherical bowl of radius \(R\) is \(V=(\pi / 3) y^{2}(3 R-y)\) when the water is \(y\) units deep. (a) At what rate is the water level changing when the water is 8 m deep? (b) What is the radius \(r\) of the water's surface when the water is \(y\) m deep? (c) At what rate is the radius \(r\) changing when the water is 8 \(\mathrm{m}\) deep?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.