Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

\(\sqrt{80}\)

Short Answer

Expert verified
The square root of 80 is \(4* \sqrt{5}\)

Step by step solution

01

Prime Factorization

Break down the number 80 into its prime factors. The prime factorization of 80 is \(2^4 * 5\).
02

Grouping and Simplifying the Factors

Since we are dealing with square roots, we group the factors into pairs. In this case, \(2^4\) can be divided into two groups of 2's: \( (2^2) * (2^2) * 5 \). The square root of \(2^2\) is 2, so it comes out of the square root and the square root of 5 remains inside.
03

Final Result

So, the final answer is \(2*2* \sqrt{5}\), which equals \(4* \sqrt{5}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

$$ \begin{array}{l}{\text { Multiple Choice If } f(x)=\cos x, \text { then the Mean Value }} \\ {\text { Theorem guarantees that somewhere between } 0 \text { and } \pi / 3, f^{\prime}(x)=} \\ {\text { (A) }-\frac{3}{2 \pi} \quad \text { (B) }-\frac{\sqrt{3}}{2} \quad(\mathbf{C})-\frac{1}{2} \quad \text { (D) } 0}\end{array} $$

True or False If \(u\) and \(v\) are differentiable functions, then \(d(u v)=d u d v .\) Justify your answer.

Production Level Suppose \(c(x)=x^{3}-20 x^{2}+20,000 x\) is the cost of manufacturing \(x\) items. Find a production level that will minimize the average cost of making \(x\) items.

Expanding Circle The radius of a circle is increased from 2.00 to 2.02 \(\mathrm{m} .\) (a) Estimate the resulting change in area. (b) Estimate as a percentage of the circle's original area.

Quadratic Approximations (a) Let \(Q(x)=b_{0}+b_{1}(x-a)+b_{2}(x-a)^{2}\) be a quadratic approximation to \(f(x)\) at \(x=a\) with the properties: \(\begin{aligned} \text { i. } Q(a) &=f(a) \\ \text { ii. } Q^{\prime}(a) &=f^{\prime}(a) \\ \text { ii. } & Q^{\prime \prime}(a)=f^{\prime \prime}(a) \end{aligned}\) Determine the coefficients \(b_{0}, b_{1},\) and \(b_{2}\) (b) Find the quadratic approximation to \(f(x)=1 /(1-x)\) at \(x=0 .\) (c) Graph \(f(x)=1 /(1-x)\) and its quadratic approximation at \(x=0 .\) Then zoom in on the two graphs at the point \((0,1) .\) Comment on what you see. (d) Find the quadratic approximation to \(g(x)=1 / x\) at \(x=1\) Graph \(g\) and its quadratic approximation together. Comment on what you see. (e) Find the quadratic approximation to \(h(x)=\sqrt{1+x}\) at \(x=0 .\) Graph \(h\) and its quadratic approximation together. Comment on what you see. (f) What are the linearizations of \(f, g,\) and \(h\) at the respective points in parts \((b),(d),\) and \((e) ?\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free