Chapter 4: Problem 14
\(\sqrt{80}\)
Chapter 4: Problem 14
\(\sqrt{80}\)
All the tools & learning materials you need for study success - in one app.
Get started for free$$ \begin{array}{l}{\text { Multiple Choice If } f(x)=\cos x, \text { then the Mean Value }} \\ {\text { Theorem guarantees that somewhere between } 0 \text { and } \pi / 3, f^{\prime}(x)=} \\ {\text { (A) }-\frac{3}{2 \pi} \quad \text { (B) }-\frac{\sqrt{3}}{2} \quad(\mathbf{C})-\frac{1}{2} \quad \text { (D) } 0}\end{array} $$
True or False If \(u\) and \(v\) are differentiable functions, then \(d(u v)=d u d v .\) Justify your answer.
Production Level Suppose \(c(x)=x^{3}-20 x^{2}+20,000 x\) is the cost of manufacturing \(x\) items. Find a production level that will minimize the average cost of making \(x\) items.
Expanding Circle The radius of a circle is increased from 2.00 to 2.02 \(\mathrm{m} .\) (a) Estimate the resulting change in area. (b) Estimate as a percentage of the circle's original area.
Quadratic Approximations (a) Let \(Q(x)=b_{0}+b_{1}(x-a)+b_{2}(x-a)^{2}\) be a quadratic approximation to \(f(x)\) at \(x=a\) with the properties: \(\begin{aligned} \text { i. } Q(a) &=f(a) \\ \text { ii. } Q^{\prime}(a) &=f^{\prime}(a) \\ \text { ii. } & Q^{\prime \prime}(a)=f^{\prime \prime}(a) \end{aligned}\) Determine the coefficients \(b_{0}, b_{1},\) and \(b_{2}\) (b) Find the quadratic approximation to \(f(x)=1 /(1-x)\) at \(x=0 .\) (c) Graph \(f(x)=1 /(1-x)\) and its quadratic approximation at \(x=0 .\) Then zoom in on the two graphs at the point \((0,1) .\) Comment on what you see. (d) Find the quadratic approximation to \(g(x)=1 / x\) at \(x=1\) Graph \(g\) and its quadratic approximation together. Comment on what you see. (e) Find the quadratic approximation to \(h(x)=\sqrt{1+x}\) at \(x=0 .\) Graph \(h\) and its quadratic approximation together. Comment on what you see. (f) What are the linearizations of \(f, g,\) and \(h\) at the respective points in parts \((b),(d),\) and \((e) ?\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.