Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises \(11-18,\) use analytic methods to find the extreme values of the function on the interval and where they occur. $$k(x)=e^{-x^{2}}, \quad-\infty< x <\infty$$

Short Answer

Expert verified
The function \(k(x) = e^{-x^2}\) has a relative minimum at \(x = 0\).

Step by step solution

01

Compute the First Derivative

Differentiate \(k(x) = e^{-x^2}\) with respect to \(x\). Using the chain rule, the derivative is \(k'(x) = -2x * e^{-x^2}\).
02

Identify Critical Numbers

Set the first derivative equal to zero and solve for \(x\). It gives \(0 = -2x * e^{-x^2}\). Since \(e^{-x^2}\) is never zero, it must be that \(x = 0\). The only critical point is \(x = 0\).
03

Compute the Second Derivative

Differentiate the derivative \(k'(x) = -2x * e^{-x^2}\) with respect to \(x\) to get the second derivative. It is \(k''(x) = 2*(e^{-x^2} - 2x^2 * e^{-x^2})\).
04

Apply the Second Derivative Test

Determine the sign of the second derivative for the critical point. It gives \(k''(0) = 2*(e^{0} - 0^2 * e^{0})\), which equals 2. As this is positive, the second derivative test suggests that \(k(x)\) has a relative minimum at \(x = 0\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

True or False If \(u\) and \(v\) are differentiable functions, then \(d(u v)=d u d v .\) Justify your answer.

Multiple Choice If the volume of a cube is increasing at 24 \(\mathrm{in}^{3} / \mathrm{min}\) and the surface area of the cube is increasing at 12 \(\mathrm{in}^{2} / \mathrm{min}\) , what is the length of each edge of the cube? \(\mathrm{}\) \(\begin{array}{lll}{\text { (A) } 2 \text { in. }} & {\text { (B) } 2 \sqrt{2} \text { in. (C) } \sqrt[3]{12} \text { in. (D) } 4 \text { in. }}\end{array}\)

Group Activity Cardiac Output In the late 1860 s, Adolf Fick, a professor of physiology in the Faculty of Medicine in Wurtzberg, Germany, developed one of the methods we use today for measuring how much blood your heart pumps in a minute. Your cardiac output as you read this sentence is probably about 7 liters a minute. At rest it is likely to be a bit under 6 \(\mathrm{L} / \mathrm{min}\) . If you are a trained marathon runner running a marathon, your cardiac output can be as high as 30 \(\mathrm{L} / \mathrm{min.}\) Your cardiac output can be calculated with the formula $$$=\frac{Q}{D}$$ where \(Q\) is the number of milliliters of \(\mathrm{CO}_{2}\) you exhale in a minute and \(D\) is the difference between the \(\mathrm{CO}_{2}\) concentration \((\mathrm{mL} / \mathrm{L})\) in the blood pumped to the lungs and the \(\mathrm{CO}_{2}\) concentration in the blood returning from the lungs. With \(Q=233 \mathrm{mL} / \mathrm{min}\) and \(D=97-56=41 \mathrm{mL} / \mathrm{L}\) $$y=\frac{233 \mathrm{mL} / \mathrm{min}}{41 \mathrm{mL} / \mathrm{L}} \approx 5.68 \mathrm{L} / \mathrm{min}$$ fairly close to the 6 \(\mathrm{L} / \mathrm{min}\) that most people have at basal (resting) conditions. (Data courtesy of J. Kenneth Herd, M.D. Quillan College of Medicine, East Tennessee State University.) Suppose that when \(Q=233\) and \(D=41,\) we also know that \(D\) is decreasing at the rate of 2 units a minute but that \(Q\) remains unchanged. What is happening to the cardiac output?

Writing to Learn You have been asked to determine whether the function \(f(x)=3+4 \cos x+\cos 2 x\) is ever negative. (a) Explain why you need to consider values of \(x\) only in the interval \([0,2 \pi] . \quad\) (b) Is f ever negative? Explain.

Motion along a Circle A wheel of radius 2 ft makes 8 revolutions about its center every second. (a) Explain how the parametric equations \(x=2 \cos \theta, \quad y=2 \sin \theta\) \(x=2 \cos \theta, \quad y=2 \sin \theta\) (b) Express \(\theta\) as a function of time \(t\) . (c) Find the rate of horizontal movement and the rate of vertical movement of a point on the edge of the wheel when it is at the position given by \(\theta=\pi / 4, \pi / 2,\) and \(\pi .\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free