Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

\(\sqrt[3]{26}\)

Short Answer

Expert verified
The exact cube root of 26 cannot be computed since 26 is not a perfect cube, but by using a calculator, one can find that it is approximately 2.962.

Step by step solution

01

Identifying the task

Recognize that the symbol \(\sqrt[3]{ }\) represents a cube root, meaning we need to find a number that, when cubed (i.e., multiplied by itself twice), equals 26.
02

Approximating the cube root

Since 26 is not a perfect cube, an exact root cannot be worked out. However, 3 is the cube root of 27, which is close to 26, so we can make the educated guess that the cube root of 26 will be slightly less than 3.
03

Using a calculator for precision

Use a scientific calculator to obtain a more precise value. Most calculators have a button for the cubic root function, usually denoted as \(\sqrt[3]{ }\) or \(^3√ \). Inputting 26 will give a more accurate result.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Draining Hemispherical Reservoir Water is flowing at the rate of 6 \(\mathrm{m}^{3} / \mathrm{min}\) from a reservoir shaped like a hemispherical bowl of radius \(13 \mathrm{m},\) shown here in profile. Answer the following questions given that the volume of water in a hemispherical bowl of radius \(R\) is \(V=(\pi / 3) y^{2}(3 R-y)\) when the water is \(y\) units deep. (a) At what rate is the water level changing when the water is 8 m deep? (b) What is the radius \(r\) of the water's surface when the water is \(y\) m deep? (c) At what rate is the radius \(r\) changing when the water is 8 \(\mathrm{m}\) deep?

Moving Shadow A man 6 ft tall walks at the rate of 5 \(\mathrm{ft} / \mathrm{sec}\) toward a streetlight that is 16 \(\mathrm{ft}\) above the ground. At what rate is the length of his shadow changing when he is 10 \(\mathrm{ft}\) from the base of the light?

Production Level Suppose \(c(x)=x^{3}-20 x^{2}+20,000 x\) is the cost of manufacturing \(x\) items. Find a production level that will minimize the average cost of making \(x\) items.

Geometric Mean The geometric mean of two positive numbers \(a\) and \(b\) is \(\sqrt{a b}\) . Show that for \(f(x)=1 / x\) on any interval \([a, b]\) of positive numbers, the value of \(c\) in the conclusion of the Mean Value Theorem is \(c=\sqrt{a b} .\)

Moving Ships Two ships are steaming away from a point \(O\) along routes that make a \(120^{\circ}\) angle. Ship \(A\) moves at 14 knots (nautical miles per hour; a nautical mile is 2000 yards). Ship \(B\) moves at 21 knots. How fast are the ships moving apart when \(O A=5\) and \(O B=3\) nautical miles? 29.5 knots

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free