Chapter 4: Problem 10
In Exercises \(7-12\) , use the Concavity Test to determine the intervals on which the graph of the function is (a) concave up and (b) concave down. $$y=5-x^{1 / 3}$$
Chapter 4: Problem 10
In Exercises \(7-12\) , use the Concavity Test to determine the intervals on which the graph of the function is (a) concave up and (b) concave down. $$y=5-x^{1 / 3}$$
All the tools & learning materials you need for study success - in one app.
Get started for freeApproximations that Get Worse and Worse Apply Newton's method to \(f(x)=x^{1 / 3}\) with \(x_{1}=1,\) and calculate \(x_{2}\) , \(x_{3}, x_{4},\) and \(x_{5} .\) Find a formula for \(\left|x_{n}\right| .\) What happens to \(\left|x_{n}\right|\) as \(n \rightarrow \infty ?\) Draw a picture that shows what is going on.
Writing to Learn The function $$ f(x)=\left\\{\begin{array}{ll}{x,} & {0 \leq x<1} \\ {0,} & {x=1}\end{array}\right. $$ is zero at \(x=0\) and at \(x=1 .\) Its derivative is equal to 1 at every point between 0 and \(1,\) so \(f^{\prime}\) is never zero between 0 and 1 and the graph of \(f\) has no tangent parallel to the chord from \((0,0)\) to \((1,0) .\) Explain why this does not contradict the Mean Value Theorem.
Analyzing Derivative Data Assume that \(f\) is continuous on \([-2,2]\) and differentiable on \((-2,2) .\) The table gives some values of \(f^{\prime}(x)\) $$ \begin{array}{cccc}\hline x & {f^{\prime}(x)} & {x} & {f^{\prime}(x)} \\\ \hline-2 & {7} & {0.25} & {-4.81} \\ {-1.75} & {4.19} & {0.5} & {-4.25} \\\ {-1.5} & {1.75} & {0.75} & {-3.31} \\ {-1.25} & {-0.31} & {1} & {-2}\end{array} $$ $$ \begin{array}{rrrr}{-1} & {-2} & {1.25} & {-0.31} \\ {-0.75} & {-3.31} & {1.5} & {1.75} \\ {-0.5} & {-4.25} & {1.75} & {4.19}\end{array} $$ $$ \begin{array}{cccc}{-0.25} & {-4.81} & {2} & {7} \\ {0} & {-5}\end{array} $$ $$ \begin{array}{l}{\text { (a) Estimate where } f \text { is increasing, decreasing, and has local }} \\ {\text { extrema. }} \\ {\text { (b) Find a quadratic regression equation for the data in the table }} \\ {\text { and superimpose its graph on a scatter plot of the data. }} \\ {\text { (c) Use the model in part (b) for } f^{\prime} \text { and find a formula for } f \text { that }} \\ {\text { satisties } f(0)=0 .}\end{array} $$
Minting Coins A manufacturer contracts to mint coins for the federal government. The coins must weigh within 0.1\(\%\) of their ideal weight, so the volume must be within 0.1\(\%\) of the ideal volume. Assuming the thickness of the coins does not change, what is the percentage change in the volume of the coin that would result from a 0.1\(\%\) increase in the radius?
Multiple Choice The \(x\) -coordinates of the points of inflection of the graph of \(y=x^{5}-5 x^{4}+3 x+7\) are \(\mathrm \) (A) 0 only (B) 1 only (C) 3 only (D) 0 and 3 (E) 0 and 1
What do you think about this solution?
We value your feedback to improve our textbook solutions.