Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises \(1-41,\) assume all variables are differentiable functions of \(t\) . Area The radius \(r\) and area \(A\) of a circle are related by the equation \(A=\pi r^{2} .\) Write an equation that relates \(d A / d t\) to $d r / d t .

Short Answer

Expert verified
The rate at which the area of the circle is changing with respect to time \(\frac{dA}{dt}\) is related to the rate at which the radius of the circle is changing with respect to time \(\frac{dr}{dt}\) by the formula \(\frac{dA}{dt} = 2\pi r \frac{dr}{dt}\).

Step by step solution

01

Identify the given equation

We are given the equation for the area of the circle, which is \(A = \pi r^{2}\).
02

Differentiate both sides with respect to time

We take the derivative on both sides of the equation with respect to time \(t\). Doing so, we have to consider that both \(A\) and \(r\) depend on time, which implicates a product rule: \(\frac{dA}{dt} = 2\pi r \frac{dr}{dt}\). Here, the derivative of \(r^{2}\) comes out as \(2r\) due to the application of the power rule, but because \(r\) itself depends on \(t\), we multiply by \(\frac{dr}{dt}\), that is the chain rule.
03

Write the final formula

Thus, the relationship between \(\frac{dA}{dt}\) and \(\frac{dr}{dt}\) comes out as: \(\frac{dA}{dt} = 2\pi r \frac{dr}{dt}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Tin Pest When metallic tin is kept below \(13.2^{\circ} \mathrm{C}\) it slowly becomes brittle and crumbles to a gray powder. Tin objects eventually crumble to this gray powder spontaneously if kept in a cold climate for years. The Europeans who saw tin organ pipes in their churches crumble away years ago called the change tin pest because it seemed to be contagious. And indeed it was, for the gray powder is a catalyst for its own formation. A catalyst for a chemical reaction is a substance that controls the rate of reaction without undergoing any permanent change in itself. An autocatalytic reaction is one whose product is a catalyst for its own formation. Such a reaction may proceed slowly at first if the amount of catalyst present is small and slowly again at the end, when most of the original substance is used up. But in between, when both the substance and its catalyst product are abundant, the reaction proceeds at a faster pace. In some cases it is reasonable to assume that the rate \(v=d x / d t\) of the reaction is proportional both to the amount of the original substance present and to the amount of product. That is, \(v\) may be considered to be a function of \(x\) alone, and $$v=k x(a-x)=k a x-k x^{2}$$ where \(\begin{aligned} x &=\text { the amount of product, } \\ a &=\text { the amount of substance at the beginning, } \\ k &=\text { a positive constant. } \end{aligned}\) At what value of \(x\) does the rate \(v\) have a maximum? What is the maximum value of \(v ?\)

Geometric Mean The geometric mean of two positive numbers \(a\) and \(b\) is \(\sqrt{a b}\) . Show that for \(f(x)=1 / x\) on any interval \([a, b]\) of positive numbers, the value of \(c\) in the conclusion of the Mean Value Theorem is \(c=\sqrt{a b} .\)

Draining Hemispherical Reservoir Water is flowing at the rate of 6 \(\mathrm{m}^{3} / \mathrm{min}\) from a reservoir shaped like a hemispherical bowl of radius \(13 \mathrm{m},\) shown here in profile. Answer the following questions given that the volume of water in a hemispherical bowl of radius \(R\) is \(V=(\pi / 3) y^{2}(3 R-y)\) when the water is \(y\) units deep. (a) At what rate is the water level changing when the water is 8 m deep? (b) What is the radius \(r\) of the water's surface when the water is \(y\) m deep? (c) At what rate is the radius \(r\) changing when the water is 8 \(\mathrm{m}\) deep?

Estimating Volume You can estimate the volume of a sphere by measuring its circumference with a tape measure, dividing by 2\(\pi\) to get the radius, then using the radius in the volume formula. Find how sensitive your volume estimate is to a 1\(/ 8\) in. error in the circumference measurement by filling in the table below for spheres of the given sizes. Use differentials when filling in the last column. $$\begin{array}{|c|c|c|}\hline \text { Sphere Type } & {\text { True Radius }} & {\text { Tape Error Radius Error Volume Error }} \\ \hline \text { Orange } & {2 \text { in. }} & {1 / 8 \text { in. }} \\ \hline \text { Melon } & {4 \text { in. }} & {1 / 8 \text { in. }} \\ \hline \text { Beach Ball } & {7 \text { in. }} & {1 / 8 \text { in. }}\end{array}$$

Strength of a Beam The strength S of a rectangular wooden beam is proportional to its width times the square of its depth. (a) Find the dimensions of the strongest beam that can be cut from a 12-in. diameter cylindrical log. (b) Writing to Learn Graph \(S\) as a function of the beam's width \(w,\) assuming the proportionality constant to be \(k=1 .\) Reconcile what you see with your answer in part (a). (c) Writing to Learn On the same screen, graph \(S\) as a function of the beam's depth \(d,\) again taking \(k=1 .\) Compare the graphs with one another and with your answer in part (a). What would be the effect of changing to some other value of \(k ?\) Try it.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free