Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Temperature and the Period of a Pendulum For oscillations of small amplitude (short swings), we may safely model the relationship between the period \(T\) and the length \(L\) of a simple pendulum with the equation $$T=2 \pi \sqrt{\frac{L}{g}}$$ where \(g\) is the constant acceleration of gravity at the pendulum's location. If we measure \(g\) in centimeters per second squared, we measure \(L\) in centimeters and \(T\) in seconds. If the pendulum is made of metal, its length will vary with temperature, either increasing or decreasing at a rate that is roughly proportional to In symbols, with \(u\) being temperature and \(k\) the proportionality constant, $$\frac{d L}{d u}=k L$$ Assuming this to be the case, show that the rate at which the period changes with respect to temperature is \(k T / 2\)

Short Answer

Expert verified
The rate at which the period changes with respect to temperature is \(kT/2\).

Step by step solution

01

Find the derivative of period with respect to length

We start with the given formula for the period of a pendulum, i.e., \(T = 2\pi\sqrt{\frac{L}{g}}\) and we want to take the derivative of this with respect to \(L\) (denoted as \(dT/dL\)). By applying the chain rule, we have \(\frac{dT}{dL} = 2\pi \cdot \frac{1}{2} \cdot (\frac{L}{g})^{-1/2} \cdot \frac{1}{g}=\frac{\pi}{\sqrt{gL^3}}\).
02

Apply the chain rule again

In this step, we need to find the derivative of the period with respect to temperature. Using the chain rule again, we get that \(\frac{dT}{du} = \frac{dT}{dL} \cdot \frac{dL}{du}\). By substituting the given \(\frac{dL}{du} = kL\) and the derived \(\frac{dT}{dL} = \frac{\pi}{\sqrt{gL^3}}\) into this equation, we get \(\frac{dT}{du} = kL \cdot \frac{\pi}{\sqrt{gL^3}}\).
03

Simplify the answer

Now we can simplify the result. We know that the period of the pendulum is given by \(T = 2\pi\sqrt{\frac{L}{g}}\). Therefore, substituting \(T = 2\pi\sqrt{\frac{L}{g}}\) into \(\frac{dT}{du} = kL \cdot \frac{\pi}{\sqrt{gL^3}}\) gives us: \(\frac{dT}{du} = kT/2\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Exploration Let \(y_{1}=a^{x}, y_{2}=\mathrm{NDER} y_{1}, y_{3}=y_{2} / y_{1},\) and \(y_{4}=e^{y_{3}}\) (a) Describe the graph of \(y_{4}\) for \(a=2,3,4,5 .\) Generalize your description to an arbitrary \(a>1\) (b) Describe the graph of \(y_{3}\) for \(a=2,3,4,\) 5. Compare a table of values for \(y_{3}\) for \(a=2,3,4,5\) with \(\ln a\) . Generalize your description to an arbitrary \(a>1\) (c) Explain how parts (a) and (b) support the statement \(\frac{d}{d x} a^{x}=a^{x} \quad\) if and only if \(\quad a=e\) (d) Show algebraically that \(y_{1}=y_{2}\) if and only if \(a=e\) .

Spread of a Rumor The spread of a rumor in a certain school is modeled by the equation \(P(t)=\frac{300}{1+2^{4-t}}\) where \(P(t)\) is the total number of students who have heard the rumor \(t\) days after the rumor first started to spread. (a) Estimate the initial number of students who first heard the rumor. (b) How fast is the rumor spreading after 4 days? (c) When will the rumor spread at its maximum rate? What is that rate?

Geometric and Arithmetic Mean The geometric mean of \(u\) and \(v\) is \(G=\sqrt{u v}\) and the arithmetic mean is \(A=(u+v) / 2 .\) Show that if \(u=x, v=x+c, c\) a real number, then $$\frac{d G}{d x}=\frac{A}{G}$$

In Exercises \(41-46,\) find (a) the right end behavior model, (b) the left end behavior model, and (c) any horizontal tangents for the function if they exist. $$y=\cos ^{-1} x$$

Marginal Revenue Suppose the weekly revenue in dollars from selling x custom- made office desks is \(r(x)=2000\left(1-\frac{1}{x+1}\right)\) (a) Draw the graph of \(r .\) What values of \(x\) make sense in this problem situation? (b) Find the marginal revenue when \(x\) desks are sold. (c) Use the function \(r^{\prime}(x)\) to estimate the increase in revenue that will result from increasing sales from 5 desks a week to 6 desks a week. (d) Writing to Learn Find the limit of \(r^{\prime}(x)\) as \(x \rightarrow \infty\) How would you interpret this number?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free