Chapter 3: Problem 67
Temperature and the Period of a Pendulum For oscillations of small amplitude (short swings), we may safely model the relationship between the period \(T\) and the length \(L\) of a simple pendulum with the equation $$T=2 \pi \sqrt{\frac{L}{g}}$$ where \(g\) is the constant acceleration of gravity at the pendulum's location. If we measure \(g\) in centimeters per second squared, we measure \(L\) in centimeters and \(T\) in seconds. If the pendulum is made of metal, its length will vary with temperature, either increasing or decreasing at a rate that is roughly proportional to In symbols, with \(u\) being temperature and \(k\) the proportionality constant, $$\frac{d L}{d u}=k L$$ Assuming this to be the case, show that the rate at which the period changes with respect to temperature is \(k T / 2\)