Chapter 3: Problem 61
Running Machinery Too Fast Suppose that a piston is moving straight up and down and that its position at time \(t\) seconds is $$s=A \cos (2 \pi b t)$$ with \(A\) and \(b\) positive. The value of \(A\) is the amplitude of the motion, and \(b\) is the frequency (number of times the piston moves up and down each second). What effect does doubling the frequency have on the piston's velocity, acceleration, and jerk? (Once you find out, you will know why machinery breaks when you run it too fast.)