Chapter 3: Problem 57
Find the normals to the curve \(x y+2 x-y=0\) that are parallel to the line $2 x+y=0 .
Chapter 3: Problem 57
Find the normals to the curve \(x y+2 x-y=0\) that are parallel to the line $2 x+y=0 .
All the tools & learning materials you need for study success - in one app.
Get started for freeMultiple Choice Find the instantaneous rate of change of the volume of a cube with respect to a side length \(x .\) $$\begin{array}{llll}{\text { (A) } x} & {\text { (B) } 3 x} & {\text { (C) } 6 x} & {\text { (D) } 3 x^{2}} & {\text { (E) } x^{3}}\end{array}$$
Multiple Choice Which of the following is the domain of \(f^{\prime}(x)\) if \(f(x)=\log _{2}(x+3) ? \quad\) (A) \(x<-3 \quad\) (B) \(x \leq 3 \quad\) (C) \(x \neq-3 \quad\) (D) \(x>-3\) (E) \(x \geq-3\)
Inflating a Balloon The volume \(V=(4 / 3) \pi r^{3}\) of a spherical balloon changes with the radius (a) At what rate does the volume change with respect to the radius when \(r=2 \mathrm{ft} ?\) (b) By approximately how much does the volume increase when the radius changes from 2 to 2.2 \(\mathrm{ft}\) ?
Particle Motion The position of a body at time \(t\) sec is \(s=t^{3}-6 t^{2}+9 t \mathrm{m} .\) Find the body's acceleration each time the velocity is zero.
Finding \(f\) from \(f^{\prime}\) Let $$f^{\prime}(x)=3 x^{2}$$ (a) Compute the derivatives of \(g(x)=x^{3}, h(x)=x^{3}-2,\) and \(t(x)=x^{3}+3 .\) (b) Graph the numerical derivatives of \(g, h,\) and \(t\) (c) Describe a family of functions, \(f(x),\) that have the property that \(f^{\prime}(x)=3 x^{2}\) . (d) Is there a function \(f\) such that \(f^{\prime}(x)=3 x^{2}\) and \(f(0)=0 ?\) If so, what is it? (e) Is there a function \(f\) such that \(f^{\prime}(x)=3 x^{2}\) and \(f(0)=3 ?\) If so, what is it?
What do you think about this solution?
We value your feedback to improve our textbook solutions.