Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

True or False The graph of \(f(x)=1 / x\) has no horizontal tangents. Justify your answer.

Short Answer

Expert verified
The statement is 'True'. The graph of the function \(f(x) = 1/x\) has no horizontal tangents.

Step by step solution

01

Understanding the function

The function given is \(f(x) = 1/x\). This is a simple reciprocal function, which is undefined at \(x = 0\).
02

Differentiation

The derivative of this function can provide information about the slope of the tangents to the function's graph. Using the rule for the derivative of a reciprocal, the derivative \(f'(x)\) is \(-1/x^2\).
03

Finding where the derivative is zero

For a horizontal tangent line, the value of the derivative must be zero. In this case, it can be noted that \(-1/x^2= 0\) has no solution, as zero is not in the range of the function \(-1/x^2\), this function is always negative.
04

Conclusion

Since the derivative never equals zero, this means that the graph of the function \(f(x) = 1/x\) has no horizontal tangent lines.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Radians vs. Degrees What happens to the derivatives of \(\sin x\) and cos \(x\) if \(x\) is measured in degrees instead of radians? To find out, take the following steps. (a) With your grapher in degree mode, graph \(f(h)=\frac{\sin h}{h}\) and estimate \(\lim _{h \rightarrow 0} f(h) .\) Compare your estimate with \(\pi / 180 .\) Is there any reason to believe the limit should be \(\pi / 180 ?\) (b) With your grapher in degree mode, estimate \(\lim _{h \rightarrow 0} \frac{\cos h-1}{h}\) (c) Now go back to the derivation of the formula for the derivative of sin \(x\) in the text and carry out the steps of the derivation using degree-mode limits. What formula do you obtain for the derivative? (d) Derive the formula for the derivative of cos \(x\) using degree-mode limits. (e) The disadvantages of the degree-mode formulas become apparent as you start taking derivatives of higher order. What are the second and third degree-mode derivatives of \(\sin x\) and \(\cos x\) ?

Multiple Choice Find \(y^{\prime \prime}\) if \(y=x \sin x\) (A) \(-x \sin x\) (B) \(x \cos x+\sin x\) (C) \(-x \sin x+2 \cos x\) (D) \(x \sin x\) (E) \(-\sin x+\cos x\)

Particle Motion A particle moves along a line so that its position at any time \(t \geq 0\) is given by the function \(s(t)=\) \(t^{3}-6 t^{2}+8 t+2\) where \(s\) is measured in meters and \(t\) is measured in seconds. (a) Find the instantaneous velocity at any time t. (b) Find the acceleration of the particle at any time t. (c) When is the particle at rest? (d) Describe the motion of the particle. At what values of t does the particle change directions?

Finding Profit The monthly profit (in thousands of dollars) of a software company is given by \(P(x)=\frac{10}{1+50 \cdot 2^{5-0.1 x}}\) where x is the number of software packages sold. (a) Graph \(P(x)\) (b) What values of \(x\) make sense in the problem situation? (c) Use NDER to graph \(P^{\prime}(x) .\) For what values of \(x\) is \(P\) relatively sensitive to changes in \(x\) ? (d) What is the profit when the marginal profit is greatest? (e) What is the marginal profit when 50 units are sold 100 units, 125 units, 150 units, 175 units, and 300 units? (f) What is \(\lim _{x \rightarrow \infty} P(x) ?\) What is the maximum profit possible? (g) Writing to Learn Is there a practical explanation to the maximum profit answer?

Group Activity In Exercises \(43-48,\) use the technique of logarithmic differentiation to find \(d y / d x\) . $$y=x^{\tan x}, x>0$$

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free