Chapter 3: Problem 50
Find an equation for a line that is normal to the graph of \(y=x e^{x}\)and goes through the origin
Chapter 3: Problem 50
Find an equation for a line that is normal to the graph of \(y=x e^{x}\)and goes through the origin
All the tools & learning materials you need for study success - in one app.
Get started for freeParticle Motion The position of a body at time \(t\) sec is \(s=t^{3}-6 t^{2}+9 t \mathrm{m} .\) Find the body's acceleration each time the velocity is zero.
Multiple Choice Find the instantaneous rate of change of the volume of a cube with respect to a side length \(x .\) $$\begin{array}{llll}{\text { (A) } x} & {\text { (B) } 3 x} & {\text { (C) } 6 x} & {\text { (D) } 3 x^{2}} & {\text { (E) } x^{3}}\end{array}$$
Finding Tangents (a) Show that the tangent to the ellipse $$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$$ at the point \(\left(x_{1}, y_{1}\right)\) has equation $$\frac{x_{1} x}{a^{2}}+\frac{y_{1} y}{b^{2}}=1$$ (b) Find an equation for the tangent to the hyperbola $$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$$ at the point \(\left(x_{1}, y_{1}\right)\)
You may use a graphing calculator to solve the following problems. True or False The domain of \(y=\sin ^{-1} x\) is \(-1 \leq x \leq 1\) . Justify your answer.
In Exercises \(33-36,\) find \(d y / d x\) $$y=x^{1+\sqrt{2}}(1+\sqrt{2}) x^{\sqrt{2}}$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.