Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 44 and \(45,\) a spring is bobbing up and down on the end of a spring according to \(s(t)=-3 \sin t .\) True or False The spring is traveling upward at \(t=3 \pi / 4\) Justify your answer.

Short Answer

Expert verified
The spring is not moving upward at \(t=3 \pi / 4\), thus the statement is false.

Step by step solution

01

Calculating the Derivative

First, calculate the derivative of \(s(t)=-3 \sin t\) using the chain rule. The derivative of \(s(t)\) with respect to \(t\) will be \(s'(t)\).
02

Insert t = \(3 \pi / 4\)

Then, substitute \(t=3 \pi / 4\) in to our derivative function and calculate the resulting value.
03

Determining the Movement

If \(s'(3 \pi / 4)\) > 0, the spring is moving upward at \(t=3 \pi / 4\), otherwise it is moving downwards.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises \(33-36,\) find \(d y / d x\) $$y=x^{-\sqrt{2}}$$

Multiple Choice Which of the following is \(\frac{d}{d x} \tan ^{-1}(3 x) ?\) \((\mathbf{A})-\frac{3}{1+9 x^{2}} \quad(\mathbf{B})-\frac{1}{1+9 x^{2}} \quad\) (C) \(\frac{1}{1+9 x^{2}}\) \((\mathbf{D}) \frac{3}{1+9 x^{2}} \quad(\mathbf{E}) \frac{3}{\sqrt{1-9 x^{2}}}\)

True or False The derivative of \(y=\sqrt[3]{x}\) is \(\frac{1}{3 x^{2 / 3}} .\) Justify your answer.

Volcanic Lava Fountains Although the November 1959 Kilauea Iki eruption on the island of Hawaii began with a line of fountains along the wall of the crater, activity was later confined to a single vent in the crater's floor, which at one point shot lava 1900 ft straight into the air (a world record). What was the lava's exit velocity in feet per second? in miles per hour? [Hint: If \(v_{0}\) is the exit velocity of a particle of lava, its height \(t\) seconds later will be \(s=v_{0} t-16 t^{2}\) feet. Begin by finding the time at which \(d s / d t=0 .\) Neglect air resistance.

Explorations Let \(f(x)=\left\\{\begin{array}{ll}{x^{2},} & {x \leq 1} \\ {2 x,} & {x>1}\end{array}\right.\) \begin{array}{ll}{\text { (a) Find } f^{\prime}(x) \text { for } x<1 .} & {\text { (b) Find } f^{\prime}(x) \text { for } x>1.2} \\ {\text { (c) Find } \lim _{x \rightarrow 1}-f^{\prime}(x) .2} &{\text { (d) Find } \lim _{x \rightarrow 1^{+}} f^{\prime}(x)}\end{array} \begin{array}{l}{\text { (e) Does } \lim _{x \rightarrow 1} f^{\prime}(x) \text { exist? Explain. }} \\ {\text { (f) Use the definition to find the left-hand derivative of } f^ {}} \\ {\text { at } x=1 \text { if it exists. } } \\ {\text { (g) Use the definition to find the right-hand derivative of } f} \\ {\text { at } x=1 \text { if it exists.}} \\ {\text { (h) Does \(f^{\prime}(1)\)} \text{exist?} \text{Explain.}} \end{array}

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free