Chapter 3: Problem 44
In Exercises 44 and \(45,\) a spring is bobbing up and down on the end of a spring according to \(s(t)=-3 \sin t .\) True or False The spring is traveling upward at \(t=3 \pi / 4\) Justify your answer.
Chapter 3: Problem 44
In Exercises 44 and \(45,\) a spring is bobbing up and down on the end of a spring according to \(s(t)=-3 \sin t .\) True or False The spring is traveling upward at \(t=3 \pi / 4\) Justify your answer.
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises \(33-36,\) find \(d y / d x\) $$y=x^{-\sqrt{2}}$$
Multiple Choice Which of the following is \(\frac{d}{d x} \tan ^{-1}(3 x) ?\) \((\mathbf{A})-\frac{3}{1+9 x^{2}} \quad(\mathbf{B})-\frac{1}{1+9 x^{2}} \quad\) (C) \(\frac{1}{1+9 x^{2}}\) \((\mathbf{D}) \frac{3}{1+9 x^{2}} \quad(\mathbf{E}) \frac{3}{\sqrt{1-9 x^{2}}}\)
True or False The derivative of \(y=\sqrt[3]{x}\) is \(\frac{1}{3 x^{2 / 3}} .\) Justify your answer.
Volcanic Lava Fountains Although the November 1959 Kilauea Iki eruption on the island of Hawaii began with a line of fountains along the wall of the crater, activity was later confined to a single vent in the crater's floor, which at one point shot lava 1900 ft straight into the air (a world record). What was the lava's exit velocity in feet per second? in miles per hour? [Hint: If \(v_{0}\) is the exit velocity of a particle of lava, its height \(t\) seconds later will be \(s=v_{0} t-16 t^{2}\) feet. Begin by finding the time at which \(d s / d t=0 .\) Neglect air resistance.
Explorations Let \(f(x)=\left\\{\begin{array}{ll}{x^{2},} & {x \leq 1} \\ {2 x,} & {x>1}\end{array}\right.\) \begin{array}{ll}{\text { (a) Find } f^{\prime}(x) \text { for } x<1 .} & {\text { (b) Find } f^{\prime}(x) \text { for } x>1.2} \\ {\text { (c) Find } \lim _{x \rightarrow 1}-f^{\prime}(x) .2} &{\text { (d) Find } \lim _{x \rightarrow 1^{+}} f^{\prime}(x)}\end{array} \begin{array}{l}{\text { (e) Does } \lim _{x \rightarrow 1} f^{\prime}(x) \text { exist? Explain. }} \\ {\text { (f) Use the definition to find the left-hand derivative of } f^ {}} \\ {\text { at } x=1 \text { if it exists. } } \\ {\text { (g) Use the definition to find the right-hand derivative of } f} \\ {\text { at } x=1 \text { if it exists.}} \\ {\text { (h) Does \(f^{\prime}(1)\)} \text{exist?} \text{Explain.}} \end{array}
What do you think about this solution?
We value your feedback to improve our textbook solutions.