Chapter 3: Problem 44
Extending the ldeas Find the unique value of \(k\) that makes the function \(f(x)=\left\\{\begin{array}{ll}{x^{3},} & {x \leq 1} \\ {3 x+k,} & {x>1}\end{array}\right.\) differentiable at \(x=1 .\)
Chapter 3: Problem 44
Extending the ldeas Find the unique value of \(k\) that makes the function \(f(x)=\left\\{\begin{array}{ll}{x^{3},} & {x \leq 1} \\ {3 x+k,} & {x>1}\end{array}\right.\) differentiable at \(x=1 .\)
All the tools & learning materials you need for study success - in one app.
Get started for freeExplorations Let \(f(x)=\left\\{\begin{array}{ll}{x^{2},} & {x \leq 1} \\ {2 x,} & {x>1}\end{array}\right.\) \begin{array}{ll}{\text { (a) Find } f^{\prime}(x) \text { for } x<1 .} & {\text { (b) Find } f^{\prime}(x) \text { for } x>1.2} \\ {\text { (c) Find } \lim _{x \rightarrow 1}-f^{\prime}(x) .2} &{\text { (d) Find } \lim _{x \rightarrow 1^{+}} f^{\prime}(x)}\end{array} \begin{array}{l}{\text { (e) Does } \lim _{x \rightarrow 1} f^{\prime}(x) \text { exist? Explain. }} \\ {\text { (f) Use the definition to find the left-hand derivative of } f^ {}} \\ {\text { at } x=1 \text { if it exists. } } \\ {\text { (g) Use the definition to find the right-hand derivative of } f} \\ {\text { at } x=1 \text { if it exists.}} \\ {\text { (h) Does \(f^{\prime}(1)\)} \text{exist?} \text{Explain.}} \end{array}
Multiple Choice Which of the following is \(d y / d x\) if \(y=\cos ^{2}\left(x^{3}+x^{2}\right) ?\) (A) \(-2\left(3 x^{2}+2 x\right)\) (B) \(-\left(3 x^{2}+2 x\right) \cos \left(x^{3}+x^{2}\right) \sin \left(x^{3}+x^{2}\right)\) (C) \(-2\left(3 x^{2}+2 x\right) \cos \left(x^{3}+x^{2}\right) \sin \left(x^{3}+x^{2}\right)\) (D) 2\(\left(3 x^{2}+2 x\right) \cos \left(x^{3}+x^{2}\right) \sin \left(x^{3}+x^{2}\right)\) (E) 2\(\left(3 x^{2}+2 x\right)\)
Multiple Choice Which of the following is the domain of \(f^{\prime}(x)\) if \(f(x)=\log _{2}(x+3) ? \quad\) (A) \(x<-3 \quad\) (B) \(x \leq 3 \quad\) (C) \(x \neq-3 \quad\) (D) \(x>-3\) (E) \(x \geq-3\)
In Exercises \(1-28\) , find \(d y / d x\) . Remember that you can use NDER to support your computations. $$y=\ln 10^{x}$$
Group Activity In Exercises \(43-48,\) use the technique of logarithmic
differentiation to find \(d y / d x\) .
$$y=(\sin x)^{x}, \quad 0
What do you think about this solution?
We value your feedback to improve our textbook solutions.