Chapter 3: Problem 40
You may use a graphing calculator to solve the following problems. True or False If \(f\) has a derivative at \(x=a,\) then \(f\) is continuous at \(x=a .\) Justify your answer.
Chapter 3: Problem 40
You may use a graphing calculator to solve the following problems. True or False If \(f\) has a derivative at \(x=a,\) then \(f\) is continuous at \(x=a .\) Justify your answer.
All the tools & learning materials you need for study success - in one app.
Get started for freeFinding Profit The monthly profit (in thousands of dollars) of a software company is given by \(P(x)=\frac{10}{1+50 \cdot 2^{5-0.1 x}}\) where x is the number of software packages sold. (a) Graph \(P(x)\) (b) What values of \(x\) make sense in the problem situation? (c) Use NDER to graph \(P^{\prime}(x) .\) For what values of \(x\) is \(P\) relatively sensitive to changes in \(x\) ? (d) What is the profit when the marginal profit is greatest? (e) What is the marginal profit when 50 units are sold 100 units, 125 units, 150 units, 175 units, and 300 units? (f) What is \(\lim _{x \rightarrow \infty} P(x) ?\) What is the maximum profit possible? (g) Writing to Learn Is there a practical explanation to the maximum profit answer?
Multiple Choice Which of the following is equal to \(d y / d x\) if \(y=x^{3 / 4} ?\) (a) $$\frac{3 x^{1 / 3}}{4} \quad\left(\text { B) } \frac{4 x^{1 / 4}}{3}\right.$$ (c) $$\frac{3 x^{1 / 4}}{4} \quad(\mathbf{D}) \frac{4}{3 x^{1 / 4}}$$ (E) \(\frac{3}{4 x^{1 / 4}}\)
In Exercises \(37-42,\) find \(f^{\prime}(x)\) and state the domain of \(f^{\prime}\) $$f(x)=\ln (2 x+2)$$
Radioactive Decay The amount \(A\) (in grams) of radioactive plutonium remaining in a 20 -gram sample after \(t\) days is given by the formula $$ A=20 \cdot(1 / 2)^{t / 140} $$ At what rate is the plutonium decaying when \(t=2\) days? Answer in appropriate units. rate \(\approx 0.098\) grams/day
Marginal Cost Suppose that the dollar cost of producing \(x\) washing machines is \(c(x)=2000+100 x-0.1 x^{2} .\) (a) Find the average cost of producing 100 washing machines. (b) Find the marginal cost when 100 machines are produced. (c) Show that the marginal cost when 100 washing machines are produced is approximately the cost of producing one more washing machine after the first 100 have been made, by calculating the latter cost directly.
What do you think about this solution?
We value your feedback to improve our textbook solutions.