Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

You may use a graphing calculator to solve the following problems. True or False If \(f\) has a derivative at \(x=a,\) then \(f\) is continuous at \(x=a .\) Justify your answer.

Short Answer

Expert verified
True

Step by step solution

01

Understand differentiability

Firstly, to say that a function \( f(x) \) is differentiable at \( x=a \) means that the derivative \( f'(a) \) exists. This indicates that the function has a defined slope at that point.
02

Understand continuity

A function \( f(x) \) is said to be continuous at a point \( x=a \) if the limit of \( f(x) \) as \( x \) approaches \( a \) is equal to \( f(a) \). It means there are no breaks, holes or jumps at \( x=a \).
03

Establish the relationship

From Calculus, we know that if a function is differentiable at a point, then the function must also be continuous at that point. This is because differentiability at a point requires the function to be 'smooth' and without corners at that point, which in turn requires the function to be continuous. However, the reverse statement is not necessarily true. A function can be continuous at a point without being differentiable there – for example, at a sharp bend or cusp.
04

Statethe answer

So, the statement 'If \(f\) has a derivative at \(x=a,\) then \(f\) is continuous at \(x=a\)' is True.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Finding Profit The monthly profit (in thousands of dollars) of a software company is given by \(P(x)=\frac{10}{1+50 \cdot 2^{5-0.1 x}}\) where x is the number of software packages sold. (a) Graph \(P(x)\) (b) What values of \(x\) make sense in the problem situation? (c) Use NDER to graph \(P^{\prime}(x) .\) For what values of \(x\) is \(P\) relatively sensitive to changes in \(x\) ? (d) What is the profit when the marginal profit is greatest? (e) What is the marginal profit when 50 units are sold 100 units, 125 units, 150 units, 175 units, and 300 units? (f) What is \(\lim _{x \rightarrow \infty} P(x) ?\) What is the maximum profit possible? (g) Writing to Learn Is there a practical explanation to the maximum profit answer?

Multiple Choice Which of the following is equal to \(d y / d x\) if \(y=x^{3 / 4} ?\) (a) $$\frac{3 x^{1 / 3}}{4} \quad\left(\text { B) } \frac{4 x^{1 / 4}}{3}\right.$$ (c) $$\frac{3 x^{1 / 4}}{4} \quad(\mathbf{D}) \frac{4}{3 x^{1 / 4}}$$ (E) \(\frac{3}{4 x^{1 / 4}}\)

In Exercises \(37-42,\) find \(f^{\prime}(x)\) and state the domain of \(f^{\prime}\) $$f(x)=\ln (2 x+2)$$

Radioactive Decay The amount \(A\) (in grams) of radioactive plutonium remaining in a 20 -gram sample after \(t\) days is given by the formula $$ A=20 \cdot(1 / 2)^{t / 140} $$ At what rate is the plutonium decaying when \(t=2\) days? Answer in appropriate units. rate \(\approx 0.098\) grams/day

Marginal Cost Suppose that the dollar cost of producing \(x\) washing machines is \(c(x)=2000+100 x-0.1 x^{2} .\) (a) Find the average cost of producing 100 washing machines. (b) Find the marginal cost when 100 machines are produced. (c) Show that the marginal cost when 100 washing machines are produced is approximately the cost of producing one more washing machine after the first 100 have been made, by calculating the latter cost directly.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free