Chapter 3: Problem 39
In Exercises \(37-42,\) find \(f^{\prime}(x)\) and state the domain of \(f^{\prime}\) $$f(x)=\ln (2-\cos x)$$
Chapter 3: Problem 39
In Exercises \(37-42,\) find \(f^{\prime}(x)\) and state the domain of \(f^{\prime}\) $$f(x)=\ln (2-\cos x)$$
All the tools & learning materials you need for study success - in one app.
Get started for freeMultiple Choice Find the instantaneous rate of change of the volume of a cube with respect to a side length \(x .\) $$\begin{array}{llll}{\text { (A) } x} & {\text { (B) } 3 x} & {\text { (C) } 6 x} & {\text { (D) } 3 x^{2}} & {\text { (E) } x^{3}}\end{array}$$
In Exercises \(41-46,\) find (a) the right end behavior model, (b) the left end behavior model, and (c) any horizontal tangents for the function if they exist. $$y=\cot ^{-1} x$$
Extending the ldeas Find the unique value of \(k\) that makes the function \(f(x)=\left\\{\begin{array}{ll}{x^{3},} & {x \leq 1} \\ {3 x+k,} & {x>1}\end{array}\right.\) differentiable at \(x=1 .\)
Multiple Choice If a flu is spreading at the rate of \(P(t)=\frac{150}{1+e^{4-t}}\) which of the following is the initial number of persons infected? \(\begin{array}{llll}{\text { (A) } 1} & {\text { (B) } 3} & {\text { (C) } 7} & {\text { (D) } 8} & {\text { (E) } 75}\end{array}\)
Group Activity In Exercises \(43-48,\) use the technique of logarithmic
differentiation to find \(d y / d x\) .
$$y=(\sin x)^{x}, \quad 0
What do you think about this solution?
We value your feedback to improve our textbook solutions.