Chapter 3: Problem 38
In Exercises \(37-42,\) find \(f^{\prime}(x)\) and state the domain of \(f^{\prime}\) $$f(x)=\ln (2 x+2)$$
Chapter 3: Problem 38
In Exercises \(37-42,\) find \(f^{\prime}(x)\) and state the domain of \(f^{\prime}\) $$f(x)=\ln (2 x+2)$$
All the tools & learning materials you need for study success - in one app.
Get started for freeDraining a Tank It takes 12 hours to drain a storage tank by opening the valve at the bottom. The depth y of fluid in the tank t hours after the valve is opened is given by the formula \(y=6\left(1-\frac{t}{12}\right)^{2} \mathrm{m}\) (a) Find the rate \(d y / d t(\mathrm{m} / \mathrm{h})\) at which the water level is changing at time. (b) When is the fluid level in the tank falling fastest? slowest? What are the values of \(d y / d t\) at these times? (c) Graph \(y\) and \(d y / d t\) together and discuss the behavior of \(y\) in relation to the signs and values of \(d y / d t .\)
Geometric and Arithmetic Mean The geometric mean of \(u\) and \(v\) is \(G=\sqrt{u v}\) and the arithmetic mean is \(A=(u+v) / 2 .\) Show that if \(u=x, v=x+c, c\) a real number, then $$\frac{d G}{d x}=\frac{A}{G}$$
True or False The speed of a particle at \(t=a\) is given by the value of the velocity at \(t=a\) . Justify your answer.
In Exercises \(1-28\) , find \(d y / d x\) . Remember that you can use NDER to support your computations. $$y=\ln 2 \cdot \log _{2} x$$
End Behavior Model Consider the hyperbola $$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$$ Show that (a) \(y=\pm \frac{b}{a} \sqrt{x^{2}-a^{2}}\) (b) \(g(x)=(b / a)|x|\) is an end behavior model for $$f(x)=(b / a) \sqrt{x^{2}-a^{2}}$$ (c) \(g(x)=-(b / a)|x|\) is an end behavior model for $$f(x)=-(b / a) \sqrt{x^{2}-a^{2}}$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.