Chapter 3: Problem 37
In Exercises \(33-38,\) find the value of \((f \circ g)^{\prime}\) at the given value of \(x\). $$f(u)=\frac{2 u}{u^{2}+1}, \quad u=g(x)=10 x^{2}+x+1, \quad x=0$$
Chapter 3: Problem 37
In Exercises \(33-38,\) find the value of \((f \circ g)^{\prime}\) at the given value of \(x\). $$f(u)=\frac{2 u}{u^{2}+1}, \quad u=g(x)=10 x^{2}+x+1, \quad x=0$$
All the tools & learning materials you need for study success - in one app.
Get started for freeExplorations Let \(f(x)=\left\\{\begin{array}{ll}{x^{2},} & {x \leq 1} \\ {2 x,} & {x>1}\end{array}\right.\) \begin{array}{ll}{\text { (a) Find } f^{\prime}(x) \text { for } x<1 .} & {\text { (b) Find } f^{\prime}(x) \text { for } x>1.2} \\ {\text { (c) Find } \lim _{x \rightarrow 1}-f^{\prime}(x) .2} &{\text { (d) Find } \lim _{x \rightarrow 1^{+}} f^{\prime}(x)}\end{array} \begin{array}{l}{\text { (e) Does } \lim _{x \rightarrow 1} f^{\prime}(x) \text { exist? Explain. }} \\ {\text { (f) Use the definition to find the left-hand derivative of } f^ {}} \\ {\text { at } x=1 \text { if it exists. } } \\ {\text { (g) Use the definition to find the right-hand derivative of } f} \\ {\text { at } x=1 \text { if it exists.}} \\ {\text { (h) Does \(f^{\prime}(1)\)} \text{exist?} \text{Explain.}} \end{array}
In Exercises \(37-42,\) find \(f^{\prime}(x)\) and state the domain of \(f^{\prime}\) $$f(x)=\ln \left(x^{2}+1\right)$$
In Exercises \(41-46,\) find (a) the right end behavior model, (b) the left end behavior model, and (c) any horizontal tangents for the function if they exist. $$y=\tan ^{-1} x$$
At what point on the graph of \(y=2 e^{x}-1\) is the tangent line perpendicular to the line \(y=-3 x+2 ?\)
In Exercises \(37-42,\) find \(f^{\prime}(x)\) and state the domain of \(f^{\prime}\) $$f(x)=\ln (2-\cos x)$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.