Chapter 3: Problem 35
In Exercises \(33-36,\) find the first four derivatives of the function. $$y=x^{-1}+x^{2}$$
Chapter 3: Problem 35
In Exercises \(33-36,\) find the first four derivatives of the function. $$y=x^{-1}+x^{2}$$
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises \(1-28\) , find \(d y / d x\) . Remember that you can use NDER to support your computations. $$y=1 / \log _{2} x$$
In Exercises \(1-28\) , find \(d y / d x\) . Remember that you can use NDER to support your computations. $$y=\ln 10^{x}$$
In Exercises \(1-28\) , find \(d y / d x\) . Remember that you can use NDER to support your computations. $$y=\ln 2 \cdot \log _{2} x$$
Exploration Let \(y_{1}=a^{x}, y_{2}=\mathrm{NDER} y_{1}, y_{3}=y_{2} / y_{1},\) and \(y_{4}=e^{y_{3}}\) (a) Describe the graph of \(y_{4}\) for \(a=2,3,4,5 .\) Generalize your description to an arbitrary \(a>1\) (b) Describe the graph of \(y_{3}\) for \(a=2,3,4,\) 5. Compare a table of values for \(y_{3}\) for \(a=2,3,4,5\) with \(\ln a\) . Generalize your description to an arbitrary \(a>1\) (c) Explain how parts (a) and (b) support the statement \(\frac{d}{d x} a^{x}=a^{x} \quad\) if and only if \(\quad a=e\) (d) Show algebraically that \(y_{1}=y_{2}\) if and only if \(a=e\) .
In Exercises \(37-42,\) find \(f^{\prime}(x)\) and state the domain of \(f^{\prime}\) $$f(x)=\ln \left(x^{2}+1\right)$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.