Chapter 3: Problem 34
In Exercises \(33-38,\) find the value of \((f \circ g)^{\prime}\) at the given value of \(x\). $$f(u)=1-\frac{1}{u}, \quad u=g(x)=\frac{1}{1-x}, \quad x=-1$$
Chapter 3: Problem 34
In Exercises \(33-38,\) find the value of \((f \circ g)^{\prime}\) at the given value of \(x\). $$f(u)=1-\frac{1}{u}, \quad u=g(x)=\frac{1}{1-x}, \quad x=-1$$
All the tools & learning materials you need for study success - in one app.
Get started for freeSpread of Flu The spread of flu in a certain school is modeled by the equation \(P(t)=\frac{200}{1+e^{5-t}}\) where \(P(t)\) is the total number of students infected \(t\) days after the flu first started to spread. (a) Estimate the initial number of students infected with this flu. (b) How fast is the flu spreading after 4 days? (c) When will the flu spread at its maximum rate? What is that rate?
Multiple Choice Which of the following is \(d y / d x\) if \(y=\cos ^{2}\left(x^{3}+x^{2}\right) ?\) (A) \(-2\left(3 x^{2}+2 x\right)\) (B) \(-\left(3 x^{2}+2 x\right) \cos \left(x^{3}+x^{2}\right) \sin \left(x^{3}+x^{2}\right)\) (C) \(-2\left(3 x^{2}+2 x\right) \cos \left(x^{3}+x^{2}\right) \sin \left(x^{3}+x^{2}\right)\) (D) 2\(\left(3 x^{2}+2 x\right) \cos \left(x^{3}+x^{2}\right) \sin \left(x^{3}+x^{2}\right)\) (E) 2\(\left(3 x^{2}+2 x\right)\)
Group Activity A particle moves along the \(x\) -axis so that its position at any time \(t \geq 0\) is given by \(x=\arctan t .\) (a) Prove that the particle is always moving to the right. (b) Prove that the particle is always decelerating. (c) What is the limiting position of the particle as \(t\) approaches infinity?
Draining a Tank It takes 12 hours to drain a storage tank by opening the valve at the bottom. The depth y of fluid in the tank t hours after the valve is opened is given by the formula \(y=6\left(1-\frac{t}{12}\right)^{2} \mathrm{m}\) (a) Find the rate \(d y / d t(\mathrm{m} / \mathrm{h})\) at which the water level is changing at time. (b) When is the fluid level in the tank falling fastest? slowest? What are the values of \(d y / d t\) at these times? (c) Graph \(y\) and \(d y / d t\) together and discuss the behavior of \(y\) in relation to the signs and values of \(d y / d t .\)
In Exercises \(1-28\) , find \(d y / d x\) . Remember that you can use NDER to support your computations. $$y=\log _{2}(1 / x)$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.