Chapter 3: Problem 34
In Exercises \(33-36,\) find \(d y / d x\) $$y=x^{1+\sqrt{2}}(1+\sqrt{2}) x^{\sqrt{2}}$$
Chapter 3: Problem 34
In Exercises \(33-36,\) find \(d y / d x\) $$y=x^{1+\sqrt{2}}(1+\sqrt{2}) x^{\sqrt{2}}$$
All the tools & learning materials you need for study success - in one app.
Get started for freeOrthogonal Families of Curves Prove that all curves in the family \(y=-\frac{1}{2} x^{2}+k\)
Inflating a Balloon The volume \(V=(4 / 3) \pi r^{3}\) of a spherical balloon changes with the radius (a) At what rate does the volume change with respect to the radius when \(r=2 \mathrm{ft} ?\) (b) By approximately how much does the volume increase when the radius changes from 2 to 2.2 \(\mathrm{ft}\) ?
Multiple Choice Which of the following is equal to the slope of the tangent to \(y^{2}-x^{2}=1\) at \((1, \sqrt{2}) ?\) ? \((\mathbf{A})-\frac{1}{\sqrt{2}} \quad(\mathbf{B})-\sqrt{2}\) \((\mathbf{C}) \frac{1}{\sqrt{2}} \quad(\mathbf{D}) \sqrt{2} \quad(\mathbf{E}) 0\)
Multiple Choice Which of the following is the domain of \(f^{\prime}(x)\) if \(f(x)=\log _{2}(x+3) ? \quad\) (A) \(x<-3 \quad\) (B) \(x \leq 3 \quad\) (C) \(x \neq-3 \quad\) (D) \(x>-3\) (E) \(x \geq-3\)
Finding Profit The monthly profit (in thousands of dollars) of a software company is given by \(P(x)=\frac{10}{1+50 \cdot 2^{5-0.1 x}}\) where x is the number of software packages sold. (a) Graph \(P(x)\) (b) What values of \(x\) make sense in the problem situation? (c) Use NDER to graph \(P^{\prime}(x) .\) For what values of \(x\) is \(P\) relatively sensitive to changes in \(x\) ? (d) What is the profit when the marginal profit is greatest? (e) What is the marginal profit when 50 units are sold 100 units, 125 units, 150 units, 175 units, and 300 units? (f) What is \(\lim _{x \rightarrow \infty} P(x) ?\) What is the maximum profit possible? (g) Writing to Learn Is there a practical explanation to the maximum profit answer?
What do you think about this solution?
We value your feedback to improve our textbook solutions.