Chapter 3: Problem 29
At what point on the graph of \(y=3^{x}+1\) is the tangent line parallel to the line \(y=5 x-1 ?\)
Chapter 3: Problem 29
At what point on the graph of \(y=3^{x}+1\) is the tangent line parallel to the line \(y=5 x-1 ?\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises \(1-28\) , find \(d y / d x\) . Remember that you can use NDER to support your computations. $$y=1 / \log _{2} x$$
The Derivative of sin 2\(x\) Graph the function \(y=2 \cos 2 x\) for \(-2 \leq x \leq 3.5 .\) Then, on the same screen, graph $$\quad y=\frac{\sin 2(x+h)-\sin 2 x}{h}$$ for \(h=1.0,0.5,\) and \(0.2 .\) Experiment with other values of \(h,\) including negative values. What do you see happening as \(h \rightarrow 0 ?\) Explain this behavior.
Inflating a Balloon The volume \(V=(4 / 3) \pi r^{3}\) of a spherical balloon changes with the radius (a) At what rate does the volume change with respect to the radius when \(r=2 \mathrm{ft} ?\) (b) By approximately how much does the volume increase when the radius changes from 2 to 2.2 \(\mathrm{ft}\) ?
The line that is normal to the curve \(x^{2}+2 x y-3 y^{2}=0\) at \((1,1)\) intersects the curve at what other point?
Finding \(f\) from \(f^{\prime}\) Let $$f^{\prime}(x)=3 x^{2}$$ (a) Compute the derivatives of \(g(x)=x^{3}, h(x)=x^{3}-2,\) and \(t(x)=x^{3}+3 .\) (b) Graph the numerical derivatives of \(g, h,\) and \(t\) (c) Describe a family of functions, \(f(x),\) that have the property that \(f^{\prime}(x)=3 x^{2}\) . (d) Is there a function \(f\) such that \(f^{\prime}(x)=3 x^{2}\) and \(f(0)=0 ?\) If so, what is it? (e) Is there a function \(f\) such that \(f^{\prime}(x)=3 x^{2}\) and \(f(0)=3 ?\) If so, what is it?
What do you think about this solution?
We value your feedback to improve our textbook solutions.