Chapter 3: Problem 25
In Exercises \(17-26\) , find the numerical derivative of the given function at the indicated point. Use \(h=0.001 .\) Is the function differentiable at the indicated point? $$f(x)=x^{2 / 5}, x=0$$
Chapter 3: Problem 25
In Exercises \(17-26\) , find the numerical derivative of the given function at the indicated point. Use \(h=0.001 .\) Is the function differentiable at the indicated point? $$f(x)=x^{2 / 5}, x=0$$
All the tools & learning materials you need for study success - in one app.
Get started for freeOrthogonal Families of Curves Prove that all curves in the family \(y=-\frac{1}{2} x^{2}+k\)
Multiple Choice Which of the following is \(\frac{d}{d x} \tan ^{-1}(3 x) ?\) \((\mathbf{A})-\frac{3}{1+9 x^{2}} \quad(\mathbf{B})-\frac{1}{1+9 x^{2}} \quad\) (C) \(\frac{1}{1+9 x^{2}}\) \((\mathbf{D}) \frac{3}{1+9 x^{2}} \quad(\mathbf{E}) \frac{3}{\sqrt{1-9 x^{2}}}\)
Particle Motion The position \((x-\) coordinate) of a particle moving on the line \(y=2\) is given by \(x(t)=2 t^{3}-13 t^{2}+22 t-5\) where is time in seconds. (a) Describe the motion of the particle for \(t \geq 0\) . (b) When does the particle speed up? slow down? (c) When does the particle change direction? (d) When is the particle at rest? (e) Describe the velocity and speed of the particle. (f) When is the particle at the point \((5,2) ?\)
Multiple Choice Which of the following is \(\frac{d}{d x} \sec ^{-1}\left(x^{2}\right) ?\) (A) \(\frac{2}{x \sqrt{x^{4}-1}} \quad\) (B) \(\frac{2}{x \sqrt{x^{2}-1}} \quad\) (C) \(\frac{2}{x \sqrt{1-x^{4}}}\) (D) \(\frac{2}{x \sqrt{1-x^{2}}} \quad\) (E) \(\frac{2 x}{\sqrt{1-x^{4}}}\)
In Exercises \(37-42,\) find \(f^{\prime}(x)\) and state the domain of \(f^{\prime}\) $$f(x)=\ln (x+2)$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.