Chapter 3: Problem 24
Finding Speed A body's velocity at time \(t\) sec is \(v=2 t^{3}-9 t^{2}+12 t-5 \mathrm{m} / \mathrm{sec} .\) Find the body's speed each time the acceleration is zero.
Chapter 3: Problem 24
Finding Speed A body's velocity at time \(t\) sec is \(v=2 t^{3}-9 t^{2}+12 t-5 \mathrm{m} / \mathrm{sec} .\) Find the body's speed each time the acceleration is zero.
All the tools & learning materials you need for study success - in one app.
Get started for freeSpread of a Rumor The spread of a rumor in a certain school is modeled by the equation \(P(t)=\frac{300}{1+2^{4-t}}\) where \(P(t)\) is the total number of students who have heard the rumor \(t\) days after the rumor first started to spread. (a) Estimate the initial number of students who first heard the rumor. (b) How fast is the rumor spreading after 4 days? (c) When will the rumor spread at its maximum rate? What is that rate?
Group Activity A particle moves along the \(x\) -axis so that its position at any time \(t \geq 0\) is given by \(x=\arctan t .\) (a) Prove that the particle is always moving to the right. (b) Prove that the particle is always decelerating. (c) What is the limiting position of the particle as \(t\) approaches infinity?
In Exercises \(37-42,\) find \(f^{\prime}(x)\) and state the domain of \(f^{\prime}\) $$f(x)=\log _{10} \sqrt{x+1}$$
In Exercises \(33-36,\) find \(d y / d x\) $$y=x^{1-e}$$
Exploration Let \(y_{1}=a^{x}, y_{2}=\mathrm{NDER} y_{1}, y_{3}=y_{2} / y_{1},\) and \(y_{4}=e^{y_{3}}\) (a) Describe the graph of \(y_{4}\) for \(a=2,3,4,5 .\) Generalize your description to an arbitrary \(a>1\) (b) Describe the graph of \(y_{3}\) for \(a=2,3,4,\) 5. Compare a table of values for \(y_{3}\) for \(a=2,3,4,5\) with \(\ln a\) . Generalize your description to an arbitrary \(a>1\) (c) Explain how parts (a) and (b) support the statement \(\frac{d}{d x} a^{x}=a^{x} \quad\) if and only if \(\quad a=e\) (d) Show algebraically that \(y_{1}=y_{2}\) if and only if \(a=e\) .
What do you think about this solution?
We value your feedback to improve our textbook solutions.