Chapter 3: Problem 23
In Exercises \(17-26\) , find the numerical derivative of the given function at the indicated point. Use \(h=0.001 .\) Is the function differentiable at the indicated point? $$f(x)=x^{2 / 3}, x=0$$
Chapter 3: Problem 23
In Exercises \(17-26\) , find the numerical derivative of the given function at the indicated point. Use \(h=0.001 .\) Is the function differentiable at the indicated point? $$f(x)=x^{2 / 3}, x=0$$
All the tools & learning materials you need for study success - in one app.
Get started for freeExploration Let \(y_{1}=a^{x}, y_{2}=\mathrm{NDER} y_{1}, y_{3}=y_{2} / y_{1},\) and \(y_{4}=e^{y_{3}}\) (a) Describe the graph of \(y_{4}\) for \(a=2,3,4,5 .\) Generalize your description to an arbitrary \(a>1\) (b) Describe the graph of \(y_{3}\) for \(a=2,3,4,\) 5. Compare a table of values for \(y_{3}\) for \(a=2,3,4,5\) with \(\ln a\) . Generalize your description to an arbitrary \(a>1\) (c) Explain how parts (a) and (b) support the statement \(\frac{d}{d x} a^{x}=a^{x} \quad\) if and only if \(\quad a=e\) (d) Show algebraically that \(y_{1}=y_{2}\) if and only if \(a=e\) .
You may use a graphing calculator to solve the following problems. True or False The domain of \(y=\sin ^{-1} x\) is \(-1 \leq x \leq 1\) . Justify your answer.
Multiple Choice Which of the following is \(d y / d x\) if \(y=\tan (4 x) ?\) (A) 4 \(\sec (4 x) \tan (4 x) \quad(\) B) \(\sec (4 x) \tan (4 x) \quad(\mathrm{C}) 4 \cot (4 x)\) (D) \(\sec ^{2}(4 x) \quad\left(\) E) 4 \(\sec ^{2}(4 x)\right.\)
Marginal Revenue Suppose the weekly revenue in dollars from selling x custom- made office desks is \(r(x)=2000\left(1-\frac{1}{x+1}\right)\) (a) Draw the graph of \(r .\) What values of \(x\) make sense in this problem situation? (b) Find the marginal revenue when \(x\) desks are sold. (c) Use the function \(r^{\prime}(x)\) to estimate the increase in revenue that will result from increasing sales from 5 desks a week to 6 desks a week. (d) Writing to Learn Find the limit of \(r^{\prime}(x)\) as \(x \rightarrow \infty\) How would you interpret this number?
In Exercises \(37-42,\) find \(f^{\prime}(x)\) and state the domain of \(f^{\prime}\) $$f(x)=\log _{10} \sqrt{x+1}$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.