Chapter 3: Problem 23
In Exercises \(1-28\) , find \(d y / d x\) . Remember that you can use NDER to support your computations. $$y=\log _{2}(1 / x)$$
Chapter 3: Problem 23
In Exercises \(1-28\) , find \(d y / d x\) . Remember that you can use NDER to support your computations. $$y=\log _{2}(1 / x)$$
All the tools & learning materials you need for study success - in one app.
Get started for freeGroup Activity In Exercises \(43-48,\) use the technique of logarithmic differentiation to find \(d y / d x\) . $$y=\frac{x \sqrt{x^{2}+1}}{(x+1)^{2 / 3}}$$
The line that is normal to the curve \(x^{2}+2 x y-3 y^{2}=0\) at \((1,1)\) intersects the curve at what other point?
Particle Motion A particle moves along a line so that its position at any time \(t \geq 0\) is given by the function \(s(t)=\) \(t^{3}-6 t^{2}+8 t+2\) where \(s\) is measured in meters and \(t\) is measured in seconds. (a) Find the instantaneous velocity at any time t. (b) Find the acceleration of the particle at any time t. (c) When is the particle at rest? (d) Describe the motion of the particle. At what values of t does the particle change directions?
Marginal Revenue Suppose the weekly revenue in dollars from selling x custom- made office desks is \(r(x)=2000\left(1-\frac{1}{x+1}\right)\) (a) Draw the graph of \(r .\) What values of \(x\) make sense in this problem situation? (b) Find the marginal revenue when \(x\) desks are sold. (c) Use the function \(r^{\prime}(x)\) to estimate the increase in revenue that will result from increasing sales from 5 desks a week to 6 desks a week. (d) Writing to Learn Find the limit of \(r^{\prime}(x)\) as \(x \rightarrow \infty\) How would you interpret this number?
In Exercises \(37-42,\) find \(f^{\prime}(x)\) and state the domain of \(f^{\prime}\) $$f(x)=\ln (2 x+2)$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.