Chapter 2: Problem 50
Continuous Function Find a value for \(a\) so that the function $$f(x)=\left\\{\begin{array}{ll}{x^{2}+x+a,} & {x<1} \\ {x^{3},} & {x \geq 1}\end{array}\right.$$ is continuous.
Chapter 2: Problem 50
Continuous Function Find a value for \(a\) so that the function $$f(x)=\left\\{\begin{array}{ll}{x^{2}+x+a,} & {x<1} \\ {x^{3},} & {x \geq 1}\end{array}\right.$$ is continuous.
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises \(71 - 74 ,\) complete the following tables and state what you believe \(\lim _ { x \rightarrow 0 } f ( x )\) to be. $$\begin{array} { c | c c c c c } { x } & { - 0.1 } & { - 0.01 } & { - 0.001 } & { - 0.0001 } & { \dots } \\ \hline f ( x ) & { ? } & { ? } & { ? } & { ? } \end{array}$$ $$\begin{array} { c c c c c } { \text { (b) } } & { 0.1 } & { 0.01 } & { 0.001 } & { 0.0001 } & { \ldots } \\ \hline f ( x ) & { ? } & { ? } & { ? } & { ? } \\\ \hline \end{array}$$ $$f ( x ) = \frac { 10 ^ { x } - 1 } { x }$$
Multiple Choice Find the average rate of change of \(f(x)=x^{2}+x\) over the interval \([1,3] .\) . \(\begin{array}{ll}{\text { (A) } y=-2 x} & {\text { (B) } y=2 x \text { (C) } y=-2 x+4} \\ {\text { (D) } y=-x+3} & {\text { (E) } y=x+3}\end{array}\)
Everywhere Discontinuous Give a convincing argument that the following function is not continuous at any real number. $$f(x)=\left\\{\begin{array}{ll}{1,} & {\text { if } x \text { is rational }} \\\ {0,} & {\text { if } x \text { is irrational }}\end{array}\right.$$
Multiple Choice If the line \(L\) fangent to the graph of a function \(f\) at the point \((2,5)\) passes through the point \((-1,-3),\) what is the slope of \(L_{2}\) . \(D$$\begin{array}{lllll}{\text { (A) }-3 / 8} & {\text { (B) } 3 / 8} & {\text { (C) }-8 / 3} & {\text { (D) } 8 / 3} & {\text { (E) undefined }}\end{array}\)
In Exercises \(15-18\) , determine whether the curve has a tangent at the indicated point, If it does, give its slope, If not, explain why not. $$f(x)=\left\\{\begin{array}{ll}{-x,} & {x<0} \\ {x^{2}-x,} & {x \geq 0}\end{array}\right.\( at \)x=0$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.