Chapter 2: Problem 32
In Exercises \(27-34,\) (a) find the vertical asymptotes of the graph of \(f(x) .(\) b) Describe the behavior of \(f(x)\) to the left and right of each vertical asymptote. $$f(x)=\sec x$$
Chapter 2: Problem 32
In Exercises \(27-34,\) (a) find the vertical asymptotes of the graph of \(f(x) .(\) b) Describe the behavior of \(f(x)\) to the left and right of each vertical asymptote. $$f(x)=\sec x$$
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises \(51 - 54 ,\) complete parts \(( a ) , (\) b) \(,\) and \(( c )\) for the piecewise-defined function. $$c = - 1 , f ( x ) = \left\\{ \begin{array} { l l } { 1 - x ^ { 2 } , } & { x \neq - 1 } \\ { 2 , } & { x = - 1 } \end{array} \right.$$
Multiple Choice $$\lim _{x \rightarrow 0} \frac{\sin (3 x)}{x}=$$ (A) 1\(/ 3 \quad\) (B) 1 (C) 3 (D) \(\sin 3 \quad\) (E) does not exist
In Exercises \(71 - 74 ,\) complete the following tables and state what you believe \(\lim _ { x \rightarrow 0 } f ( x )\) to be. $$\begin{array} { c | c c c c c } { x } & { - 0.1 } & { - 0.01 } & { - 0.001 } & { - 0.0001 } & { \dots } \\ \hline f ( x ) & { ? } & { ? } & { ? } & { ? } \end{array}$$ $$\begin{array} { c c c c c } { \text { (b) } } & { 0.1 } & { 0.01 } & { 0.001 } & { 0.0001 } & { \ldots } \\ \hline f ( x ) & { ? } & { ? } & { ? } & { ? } \\\ \hline \end{array}$$ $$f ( x ) = \sin \frac { 1 } { x }$$
Multiple Choice Which of the following points of discontinuity of $$f(x)=\frac{x(x-1)(x-2)^{2}(x+1)^{2}(x-3)^{2}}{x(x-1)(x-2)(x+1)^{2}(x-3)^{3}}$$ is not removable? \(\begin{array}{ll}{(\mathbf{A}) x=-1} & {(\mathbf{B}) x=0} \\ {(\mathbf{D}) x=2} & {(\mathbf{E}) x=3}\end{array} \quad(\mathbf{C}) x=1\)
The Greatest Integer Function (a) Show that $$\frac{x-1}{x}<\frac{\text { int } x}{x} \leq 1(x>0)$$ and $$\frac{x-1}{x}>\frac{\text { int } x}{x} \geq 1(x<0)$$ (b) Determine $$\lim _{x \rightarrow \infty} \frac{\operatorname{int} x}{x}$$ (c) Determine$$\lim _{x \rightarrow-\infty} \frac{\operatorname{int} x}{x}$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.