Chapter 2: Problem 30
In Exercises 29 and 30 , use a graph to show that the limit does not exist. $$\lim _ { x \rightarrow 2 } \frac { x + 1 } { x ^ { 2 } - 4 }$$
Chapter 2: Problem 30
In Exercises 29 and 30 , use a graph to show that the limit does not exist. $$\lim _ { x \rightarrow 2 } \frac { x + 1 } { x ^ { 2 } - 4 }$$
All the tools & learning materials you need for study success - in one app.
Get started for freeMultiple Choice Find the average rate of change of \(f(x)=x^{2}+x\) over the interval \([1,3] .\) . \(\begin{array}{ll}{\text { (A) } y=-2 x} & {\text { (B) } y=2 x \text { (C) } y=-2 x+4} \\ {\text { (D) } y=-x+3} & {\text { (E) } y=x+3}\end{array}\)
In Exercises 29 and 30 , use a graph to show that the limit does not exist. $$\lim _ { x \rightarrow 1 } \frac { x ^ { 2 } - 4 } { x - 1 }$$
Multiple Choice Which of the following points of discontinuity of $$f(x)=\frac{x(x-1)(x-2)^{2}(x+1)^{2}(x-3)^{2}}{x(x-1)(x-2)(x+1)^{2}(x-3)^{3}}$$ is not removable? \(\begin{array}{ll}{(\mathbf{A}) x=-1} & {(\mathbf{B}) x=0} \\ {(\mathbf{D}) x=2} & {(\mathbf{E}) x=3}\end{array} \quad(\mathbf{C}) x=1\)
In Exercises \(31 - 36 ,\) determine the limit. $$\lim _ { x \rightarrow 0 ^ { + } } \frac { x } { | x | }$$
In Exercises \(7 - 14 ,\) determine the limit by substitution. Support graphically. $$\lim _ { x \rightarrow 1 } \left( x ^ { 3 } + 3 x ^ { 2 } - 2 x - 17 \right)$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.