Chapter 2: Problem 29
In Exercises \(27-34,\) (a) find the vertical asymptotes of the graph of \(f(x) .(\) b) Describe the behavior of \(f(x)\) to the left and right of each vertical asymptote. $$f(x)=\frac{x^{2}-2 x}{x+1}$$
Chapter 2: Problem 29
In Exercises \(27-34,\) (a) find the vertical asymptotes of the graph of \(f(x) .(\) b) Describe the behavior of \(f(x)\) to the left and right of each vertical asymptote. $$f(x)=\frac{x^{2}-2 x}{x+1}$$
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises \(51 - 54 ,\) complete parts \(( a ) , (\) b) \(,\) and \(( c )\) for the piecewise-defined function. $$c = - 1 , f ( x ) = \left\\{ \begin{array} { l l } { 1 - x ^ { 2 } , } & { x \neq - 1 } \\ { 2 , } & { x = - 1 } \end{array} \right.$$
In Exercises 49 and 50 , determine the limit. Assume that $$\lim _ { x \rightarrow b } f ( x ) = 7$$ and $$\lim _ { x \rightarrow b } g ( x ) = - 3$$ (a) $$\lim _ { x \rightarrow b } ( f ( x ) + g ( x ) ) \quad \quad$$ (b) $$\lim _ { x \rightarrow b } ( f ( x ) \cdot g ( x ) )$$ (c) $$\lim _ { x \rightarrow b } 4 g ( x ) - \quad$$ (d) $$\lim _ { x \rightarrow b } \frac { f ( x ) } { g ( x ) }$$
In Exercises \(9-12,\) at the indicated point find (a) the slope of the curve, (b) an equation of the tangent, and (c) an equation of the tangent. (d) Then draw a graph of the curve, tangent line, and normal line in the same square viewing window. $$y=x^{2}-3 x-1 \quad\( at \)\quad x=0$$
In Exercises \(7 - 14 ,\) determine the limit by substitution. Support graphically. $$\lim _ { x \rightarrow - 1 / 2 } 3 x ^ { 2 } ( 2 x - 1 )$$
In Exercises \(19 - 28 ,\) determine the limit graphically. Confirm algebraically. $$\lim _ { x \rightarrow 0 } \frac { 5 x ^ { 3 } + 8 x ^ { 2 } } { 3 x ^ { 4 } - 16 x ^ { 2 } }$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.