Chapter 2: Problem 26
In Exercises \(21-26,\) find \(\lim _{x \rightarrow \infty} y\) and \(\lim _{x \rightarrow-\infty} y\). $$y=\frac{x \sin x+2 \sin x}{2 x^{2}}$$
Chapter 2: Problem 26
In Exercises \(21-26,\) find \(\lim _{x \rightarrow \infty} y\) and \(\lim _{x \rightarrow-\infty} y\). $$y=\frac{x \sin x+2 \sin x}{2 x^{2}}$$
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises 47 and 48 , determine whether the graph of the function has a tangent at the origin. Explain your answer. $$f(x)=\left\\{\begin{array}{ll}{x^{2} \sin \frac{1}{x},} & {x \neq 0} \\\ {0,} & {x=0}\end{array}\right.$$
In Exercises \(55 - 58 ,\) complete parts \(( a ) - ( d )\) for the piecewise- definedfunction. \(\quad (\) a) Draw the graph of \(f\) . (b) At what points \(c\) in the domain of \(f\) does \(\lim _ { x \rightarrow c } f ( x )\) exist? (c) At what points \(c\) does only the left-hand limit exist? (d) At what points \(c\) does only the right-hand limit exist? $$f ( x ) = \left\\{ \begin{array} { l l } { x , } & { - 1 \leq x < 0 , \text { or } 0 < x \leq 1 } \\ { 1 , } & { x = 0 } \\ { 0 , } & { x < \- 1 , \text { or } x > 1 } \end{array} \right.$$
In Exercises \(67 - 70\) , use the following function. \(f ( x ) = \left\\{ \begin{array} { l l } { 2 - x , } & { x \leq 1 } \\ { \frac { x } { 2 } + 1 , } & { x > 1 } \end{array} \right.\) Multiple Choice What is the value of \(\lim _ { x \rightarrow 1 } f ( x ) ?\) \(( \mathrm { A } ) 5 / 2 \quad ( \mathrm { B } ) 3 / 2\) (C) 1 (D) 0 (E) does not exist
In Exercises \(19 - 28 ,\) determine the limit graphically. Confirm algebraically. $$\lim _ { x \rightarrow 0 } \frac { 5 x ^ { 3 } + 8 x ^ { 2 } } { 3 x ^ { 4 } - 16 x ^ { 2 } }$$
.Table 2.3 gives the amount of federal spending in billions of dollars for agriculture for several years. \(\begin{array}{ll}{\text { Year }} & {\text { Agriculture Spending(dollar billion) }} \\ {1990} & {12.0} \\ {1995} & {9.0} \\ {1999} & {23.0} \\\ {2000} & {26.6} \\ {2001} & {26.4} \\ {2002} & {22.0} \\ {2003} & {2003}\end{array}\) (a) Let \(x=0\) represent \(1990, x=1\) represent \(1991,\) and so forth. Make a scatter plot of the data. (b) Let \(P\) represent the point corresponding to \(2003, Q_{1}\) the point corresponding to \(2000, Q_{2}\) the point corresponding to \(2001,\) and \(Q_{3}\) the point corresponding to \(2002 .\) Find the slope of the secant line \(P Q_{i}\) for \(i=1,2,3 .\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.